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Preface

The World Wide Web has become part of our everyday life and information
retrieval and data mining on the Web are now of enormous practical interest.
The algorithms supporting these activities combine the view of the Web as a
text repository and as a graph, induced in various ways by links among pages,
links among hosts, or other similar networks.

The aim of the 4th Workshop on Algorithms and Models for the Web-Graph
(WAW 2006) was to further the understanding of these Web-induced graphs and
stimulate the development of high-performance algorithms and applications that
use the graph structure of the Web. The workshop was meant both to foster an
exchange of ideas among the diverse set of researchers already involved in this
topic and to act as an introduction for the larger community to the state of the
art in this area. The workshop program included invited keynote talks by Fan
Chung-Graham (UCSD), Soumen Chakrabarti (IITB), Walter Willinger (ATT
Research) and Filippo Menczer (Indiana).

WAW 2006 took place on November 30 and December 1 at the Banff Interna-
tional Research Institute (BIRS), in Banff, Alberta (Canada). It was the fourth in
a series of very successful workshops on the Web graph. WAW 2002 (Vancouver)
and 2004 (Rome) were held in conjunction with the Annual IEEE Symposium
on Foundations of Computer Science (FOCS). WAW 2003 (Budapest) was held
in conjunction with the 12th International World Wide Web Conference.

In response to the call for abstracts we received 28 submissions. Almost all
submissions were relevant to the topic of the workshop and contained interest-
ing ideas. The Organizing Committee selected 12 contributors to present their
work at the workshop, while 12 others were invited to prepare a poster about
their work, which was exhibited at the workshop. Those authors selected for con-
tributed talks were invited to prepare a paper for the proceedings. The poster
presenters were given an opportunity to explain their work during a poster ses-
sion. All participants were invited to judge the posters in a contest for best
poster. The three posters that received the most votes were also invited to sub-
mit their work to the proceedings. The papers were then submitted to a refereeing
process by the Program Committee, and the final versions are included in this
volume. The volume also includes abstracts of the invited talks.

We would like to thank all those that helped to make this workshop a success,
with special thanks to the staff at BIRS. We thank the MITACS (Mathemat-
ics of Information Technology and Complex Systems) Network of Centres of
Excellence (NCE) for financial and organizational support. We also owe many
thanks to Andrei Voronkov for providing the EasyChair conference system. With
this system, managing the refereeing process and the collation of the proceed-
ings became almost effortless. Finally, we would like to thank all participants
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in the workshop, all authors of the contributed papers, and especially the in-
vited speakers for their contribution in making WAW 2006 an amicable and
stimulating forum for the exchange of ideas about the Web graph.

November 2007 William Aiello
Andrei Broder

Jeannette Janssen
Evangelos Milios
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Modelling and Mining of Networked Information

Spaces

William Aiello1, Andrei Broder2, Jeannette Janssen3, and Evangelos Milios4

1 Department of Computer Science, University of British Columbia
2 Yahoo! Research

3 Department of Mathematics and Statistics, Dalhousie University
4 Faculty of Computer Science, Dalhousie University

eem@cs.dal.ca

1 Overview

In recent years, the emergence of the Web and the dramatic increase in comput-
ing, storage and networking capacity has given rise to the concept of networked
information spaces. The prime example of a networked information space is
the World Wide Web itself. The Web, in its pure form, is a set of hypertext
documents, with links in one document pointing to another document. Other
networked information spaces enabled by and built on top of the Web include:

– Online Case Law, where judicial cases form precedents for similar cases which
come after them. Judicial decisions are in effect laws that fill in gaps in
statute law. As a result, a case makes reference to other cases or to statutes
to support the judicial decision, leading the creation of a complex set of links
present in cases.

– The scientific literature, where articles cite and are cited other articles, lead-
ing to the creation of a citation graph, where vertices are publications and
directional edges are citations between articles. Co-authorship relations be-
tween authors give rise to a different graph, the co-authorship graph, where
vertices are authors and edges are co-authorships of papers.

– The patent literature, which is interconnected in a manner similar to the
scientific literature.

– Blog space, a recent extension of the World Wide Web, which significantly
lowers the threshold of expertise required for an individual to post web con-
tent.

– Social information spaces, such as del.icio.us, where people share their
bookmarks, which are tagged with keywords, and connect to each other via
explicit friendship links.

– Collaboratively authored Web resources, such as the Wikipedia1, YouTube2,
Facebook3 and Flickr4.

1 http://en.wikipedia.org/wiki/Wikipedia
2 http://www.youtube.com/
3 http://www.facebook.com/
4 http://www.flickr.com/

W. Aiello et al. (Eds.): WAW 2006, LNCS 4936, pp. 1–17, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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A key characteristic of networked information spaces is their social nature and
their organic growth. They are not the product of a single individual, but of an
entire collaborating community, resulting in the creation of both comprehensive
information resources and social networks. Networked information spaces repre-
sent both resources to be tapped into (through appropriate information search
and retrieval tools), as well as entities that can be studied as physical phenomena
(i.e. measured and modeled). Their massive scale and distributed implementa-
tion requires the development of both new technology and new scientific methods
for their study. More specifically, open algorithmic problems are:

– Information Search and Retrieval. Open issues are (a) how to cope algo-
rithmically with the massive scale of the information spaces, requiring ever
increasing computational and storage resources, (b) how to rank search re-
sults and introduce personalization, where the personal context of the search
is taken into account.

– Organization of the networked information space, which includes forming
possibly hierarchical clusters of documents and authors, making browsing a
complementary activity to search.

The science of networked information spaces requires the development of new
mathematical models for describing their dynamic nature, in a manner that is
consistent with the properties of real networks. Given the massive scale of the
networks, appropriate abstraction mechanisms need to be developed forming the
“lenses” through which to observe their dynamic behaviour, and thereby test the
validity of the proposed mathematical models.

The MoMiNIS Winter School provided the opportunity to a group of selected
graduate students to attend tutorials in the Modelling and Mining of Networked
Information Spaces from recognized experts in the field, and present their own
work and receive feedback. The unique setting of BIRS was highly conducive to
personal interaction and generation of new ideas. The Winter School had the
following objectives:

– To provide knowledge of the state of the art in the field via tutorials by
experts

– To support young researchers with networking
– To provide young researchers with feedback on their research and the op-

portunity to discuss their research interests with established researchers in
the field

2 Presentation Highlights

The Winter school consisted of four invited tutorials, a number of poster presen-
tations, and a panel discussion based on a set of questions put to the panelists5.
5 In this section, we give a summary of the tutorials held at the workshop. Any per-

ceived bias, error or oversight should be attributed not to the lecturers, but to the
inevitable inaccuracies of the editors’ observations.
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2.1 Tutorials

On measuring, inferring, and modeling Internet connectivity: A guided tour across
the TCP/IP protocol stack by Dr. Walter Willinger, AT&T Labs-Research.

Dr. Willinger’s tutorial focused on the intricacies of measuring Internet topol-
ogy, as seen from TCP/IP protocol stack. One of the most visible manifestations
of the Internets vertical decomposition is the 5-layer TCP/IP protocol stack.
This layered architecture gives rise to a number of different connectivity struc-
tures, with the lower layers (e.g., router-level) defining more physical and the
higher layers (e.g., the Web) more virtual or logical types of topologies. The
resulting graph structures have been designed with very different objectives in
mind, have evolved according to different circumstances, and have been shaped
by succinctly different forces. The main objective of this tutorial was to discuss
the problems and challenges associated with measuring, inferring, and modeling
these different connectivity structures. To this end, the tutorial was divided into
the following four parts:

1. Measurements: Internet connectivity measurements are notorious for their
ambiguities, inaccuracies, and incompleteness. As a general rule, they should
never be taken at face value, but need to be scrutinized for consistency with
the networking context from which they were obtained, and to do so, it is
important to understand the process by which they were collected.

2. Inference: The challenge is to know whether or not the results we infer
from our measurements are indeed well-justified claims, and at issue are
the quality of the measurements themselves, the quality of their analysis,
and the sensitivity of the inferred properties to known imperfections of the
measurements.

3. Modeling: Developing appropriate models of Internet connectivity that elu-
cidate observed structure or behavior is typically an under-constrained prob-
lem, meaning that there are in general many different explanations for one
and the same phenomenon. To argue in favor of any particular explana-
tion typically involves additional information, either in the form of domain
knowledge or of new or complementary data. It is in the choice of this side in-
formation and how it is incorporated into the model building process, where
considerable differences arise in the various approaches to Internet topology
modeling that have been applied to date.

4. Model validation: There has been an increasing awareness of the fact that
the ability to replicate some statistics of the original data or inferred quan-
tities does not constitute validation for a particular model. While one can
always use a model with enough parameters to fit a given data set, such
models are merely descriptive and have in general no explanatory power.
For the problems described here, appropriate validation typically means ad-
ditional work (e.g., identifying and collecting complementary measurements
that can be used to check a proposed explanation).
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The take-home lesson from this tutorial was that measuring Internet
connectivity is a non-trivial task, and the tools available cannot measure
everything we are interested in measuring. As a result, we should be very
careful about the claims we make about models based on incomplete mea-
surements on the Internet.

Walter Willinger received the Diplom (Dipl. Math.) from the ETH Zurich, Swit-

zerland, and the M.S. and Ph.D. degrees from the School of ORIE, Cornell University,

Ithaca, NY. He is currently a member of the Information and Software Systems Re-

search Center at AT&T Labs - Research, Florham Park, NJ, and before that, he was

a Member of Technical Staff at Bellcore Applied Research (1986-1996). His research

interests include studying the multiscale nature of Internet traffic and topology and de-

veloping a theoretical foundation for dealing with large-scale communication networks

such as the Internet. He is a Fellow of ACM (2005) and a Fellow of IEEE (2005). For

his work on the self-similar (fractal) nature of Internet traffic, he received the 1996

IEEE W.R.G. Baker Prize Award, the 1994 W.R. Bennett Prize Paper Award, and the

2005 ACM/SIGCOMM Test of Time Paper Award.

Web Mining, mapping, modeling and mingling by Prof. Filippo Menczer, Indiana
State University

The Web is a complex self-organized system whose evolution and use is shaped
by many concurrent social, cognitive, economic, and information phenomena.
This tutorial described ongoing efforts to study the topological and dynamical
properties of link, content, and semantic networks stemming from some of these
forces. It was discussed what we think, what we know, what we can use regarding
the structure, content, and use of the Web, and what the future of intelligent,
cooperative Web search may bring.

Prof. Menczer reviewed the concept of semantic similarity based on link struc-
ture and his study using the Open Directory Project data. He stated that content
alone is a poor predictor of semantic similarity. Making reference to the Heuris-
tically Optimized Trade-offs (HOT) work to explain power laws [6], he suggested
that it is useful to incorporate content into the growth models based on topology,
pointing to his recent work on the Evolution of Document Networks, and how
to extend growth models to account for lexical similarity [7].

He then went on to discuss social networking through bookmark sharing.
Consumer-driven tagging represents a paradigm shift, where both text and links
are author-driven. An open problem is the study of the properties of relatedness
between pages bookmarked by the same person. Can this lead to a new notion
of similarity between pages, if averaged over many persons?

Another issue of social networking is spamming. Is there a trust infrastruc-
ture that can be overlaid on social networks? A third issue is that for a social
networking service to succeed, it needs a critical mass of users.

In peer-to-peer search, users collaborate to speed up and improve search re-
sults. The key question is how to route queries to the right peers, and how
to combine the results. The opportunity exists to learn models of other users
by observing the process of querying, leading to the representation of semantic
communities.
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Filippo Menczer is an associate professor of informatics and computer science, ad-

junct associate professor of physics, and a member of the cognitive science program

at Indiana University, Bloomington. He holds a Laurea in Physics from the University

of Rome and a Ph.D. in Computer Science and Cognitive Science from the Univer-

sity of California, San Diego. Dr. Menczer has been the recipient of Fulbright, Rotary

Foundation, and NATO fellowships, and is a fellow-at-large of the Santa Fe Institute.

His research is supported by a Career Award from the National Science Foundationon

and focuses on Web, text, and data mining, Web intelligence, distributed information

systems, social Web search, adaptive intelligent agents, complex systems and networks,

and artificial life.

Ranking and labeling graphs: Analysis of links and node attributes by Prof.
Soumen Chakrabarti, IITB, Mumbai

In this tutorial, mathematical techniques for ranking and labeling nodes in
a graph were discussed, based on the link structure of the graph as well as at-
tributes of the nodes. Ranking and labeling have obvious applications in Web
search and page classification, but the range of applications is widening to finer-
grained entity-relationship graphs where nodes represent entities like people,
emails, papers, organizations and locations and edges represent relations like
works-for, wrote, cited, is-located-in. Applications also include annotating un-
structured and semistructured sources with type tags which can then be indexed
for search. On the subject of ranking, the presentation started with a general
discussion on learning to rank feature vectors, given training data, using a max-
imum margin formulation. Ranking nodes in graphs is based on the intuition
that nodes should score highly if high-scoring instances link to it, leading to two
approaches, Hyperlink induced topic search (HITS), and Pagerank. The con-
nection between HITS and SVD/PCA was presented, followed by the random
walk model on which Pagerank is based. The stability of ranking in HITS and
Pagerank was introduced. The discussion of ranking concluded with the presen-
tation of refinements of the basic models, such as Probabilistic HITS variants,
and Personalized and Topic-sensitive Pagerank. On the subject of labelling, the
problem of collective labelling of a large number of instances, whose labels are
not independent, was presented. SVM-based training and a probabilistic view
of Markov networks was discussed, leading to relaxation-based algorithms for
inference.

Soumen Chakrabarti received his B.Tech in Computer Science from the Indian
Institute of Technology, Kharagpur, in 1991 and his M.S. and Ph.D. in Computer
Science from the University of California, Berkeley in 1992 and 1996. At Berkeley
he worked on compilers and runtime systems for running scalable parallel scientific
software on message passing multiprocessors.

He was a Research Staff Member at IBM Almaden Research Center from 1996 to
1999, where he worked on the Clever Web search project and led the Focused Crawling
project.

In 1999 he joined the Department of Computer Science and Engineering at the
Indian Institute of Technology, Bombay, where he has been an Associate professor
since 2003.

In Spring 2004 he was Visiting Associate professor at Carnegie-Mellon University.
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He has published in the WWW, SIGIR, SIGKDD, SIGMOD, VLDB, ICDE, SODA,
STOC, SPAA and other conferences as well as Scientific American, IEEE Computer,
VLDB and other journals. He holds eight US patents on Web-related inventions. He has
served as technical advisor to search companies and vice-chair or program committee
member for WWW, SIGIR, SIGKDD, VLDB, ICDE, SODA and other conferences,
and guest editor or editorial board member for DMKD and TKDE journals. He is also
author of a book on Web Mining.

His current research interests include integrating, searching, and mining text and

graph data models, exploiting types and relations in search, and Web graph and pop-

ularity analysis.

Navigation and Evolution of Social Networks by Prof. David Liben-Nowell, Car-
leton College, Minnesota

In this tutorial, Prof. Liben-Nowell introduced some of the empirical observa-
tions of the structure of social networks, especially in comparison to the structure
of the web. He then discussed a number of algorithmic topics arising in social
networks, including the latent information contained in social networks (how
much information about people is implicit in their connections?) and how to
search social networks (can you find a short path to a target without global
knowledge of the graph?).

In the first part of the tutorial, starting with Milgram’s experiments (1967)
of forming chains between Omahaians and a stockbroker in Sharon, MA, that
led to the notion of six degrees of separation, he went on to discuss properties
of a variety of social networks. The high-school friendships network [Moody
2001] displayed both a small diameter and a high clustering coefficient, with
the Watts-Strogatz model (1998) of a rewired ring lattice trying to model this
behaviour. He next discussed the notion of Greedy Routing in social networks
search that goes beyond homophily (a person’s friends tend to be similar to
him/her), to capture the notion that the next step in seeking a route to the
target is chosen to maximimize the similarity to the target. Required conditions
for the greedy routing algorithm to work include having well-scattered friends
(to reach faraway targets) as well as well-localized friends (to home in on nearby
targets). Rank-based friendship aims to capture the notion of non-uniformly
distributed populations. It is a model that assigns a probability that A is a
friend of B inversely proportional to the the number of people closer to A than
the distance from A to B. In real life, there are may ways to define distance.
How are they to be combined? Relevant research was reviewed.

The second part of the tutorial dealt with the information content of social
networks. If we focus on Milgram’s experiments, we note that only 18 chains
were completed out of 96. There is little data on why failed chains failed, but
it implies that certain targets may be significantly harder to reach than others.
More recent small-world experiments confirmed that most chains fail. The notion
of friendship is messier than originally thought: there are systematic friendships
(due to geographical or occupational proximity) and random friendships (due
to a serendipitous encounter). Evolution through common friends (closing the
triangle) is another possibility, that explains high clustering coefficients. The
final topic of the second part is the introduction of the link prediction problem,
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as a means to evaluate the various models discussed earlier. The idea is to train
the model using network data up to a certain time, and then try to predict
what links will appear at subsequent times. Experimental results demonstrate
that although performance of prediction is significantly better than random,
a large fraction of predictions are still wrong. Furthermore, only 5-10% of the
most similar people end up friends. Finally, not all social networks behave the
same. There are unsystematic networks (where predictors perform the worst),
simplistic networks (predictors are best at rank=1), popularity contest networks
(preferential attachment is too good).

David Liben-Nowell is an assistant professor of computer science at Carleton College,

Minnesota. He received his PhD in theoretical computer science from MIT’s Computer

Science and Artificial Intelligence Laboratory in 2005. His research interests include a

variety of applications of the techniques of theoretical computer science to questions

arising within and beyond computer science, with a focus on large-scale information

networks and their evolution. David’s research interests also include game theory, peer-

to-peer computing, and computational biology. Prior to coming to MIT, David received

a BA from Cornell and an MPhil from the University of Cambridge.

Graph Theory in the Information Age by Prof. Fan Chung-Graham, University
of California, San Diego

Recently, graph theory has emerged as a primary tool for detecting numer-
ous hidden structures in various information networks, including Web graphs,
social networks, biological networks, or more generally, any graph representing
relations in massive data sets. Thus, through examples of large sparse graphs in
realistic networks, research in graph theory has been forging ahead into an excit-
ing new direction. This tutorial gave an overview of the various graph theoretic
techniques that can be used to attack problem related to real life networks, and
gave an overview of challenging open problems in this emerging research area.

Fan Chung-Graham received a B.S. degree in mathematics from National Taiwan
University in 1970 and a Ph.D. in mathematics from the University of Pennsylvania in
1974, after which she joined the technical staff of AT&T Bell Laboratories. From 1983
to 1991, she headed the Mathematics, Information Sciences and Operations Research
Division at Bellcore. In 1991 she became a Bellcore Fellow. In 1993, she was the Class
of 1965 Professor of Mathematics at the the University of Pennsylvania. Since 1998, she
has been a Professor of Mathematics and Professor of Computer Science and Enginering
at the University of California, San Diego. She is also the Akamai Professor in Internet
Mathematics.

Her research interests are primarily in graph theory, combinatorics, and algorithmic

design, in particular in spectral graph theory, extremal graphs, graph labeling, graph

decompositions, random graphs, graph algorithms, parallel structures and various ap-

plications of graph theory in Internet computing, communication networks, software

reliability, chemistry, engineering, and various areas of mathematics. She was awarded

the Allendoerfer Award by Mathematical Association of America in 1990. Since 1998,

she has been a member of the American Academy of Arts and Sciences.
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2.2 Panel Discussion

The winter school concluded with a panel discussion, loosely based on a list of
questions posed to the panelists by the workshop organizers. The panel was mod-
erated by Bill Aiello and the panelists were Andrei Broder, David Liben-Nowell,
Fan Chung, Filippo Menczer, Soumen Chakrabarti, and Walter Willinger. We
next present a summary of the discussion that followed each question.

There has been talk of a new ”network science”. How does the
scientific method apply to this new science? What are the steps a
good network scientist should follow?

Much of Computer Science is about proving properties of models, not coming
up with theories to explain scientific observations. Network science is new be-
cause validity is based on statistical evidence. In practical terms, there is a lot
of funding for this research area and companies are taking advantage of large
networks. It is exciting that people from many different backgrounds are working
together to understand networks. From a different perspective, network science
is not a new science. It is an old science created by sociologists. It is not clear
what we are proving by experiments. However, the size of the networks makes a
difference, allowing us to look at social networks under a new light. Furthermore,
we have information networks, such as the Web.

Network science is not like natural science, because technology
changes constantly. How does this change the game?

Technology is changing the landscape. Space is becoming smaller. Attention
gets divided in different ways. Our behaviour and the ways we interact change,
resulting in the need to change our assumptions. Our technology is creating a
loop, in that we are creating objects and we study them as if we do not know
what is inside, using the same tools as natural sciences, but applied to human-
made artifacts. This type of research is going to earn the attribute “Science”
for Computer Science because of this. The fact that mathematicians, physicists,
and computer scientists are coming together is exciting, providing a good model
of what should be happening more in academia. Economists also study complex
systems, and they could join the effort.

Network science was invented by physicists, who are very good at popularizing
their research. Physicists apply their approach to this field and make claims,
then domain experts from computer science, engineering and mathematics come
along and formalize the field, by uncovering the “truth” about these networks,
and verifying experimentally their hypothesized properties. The process is messy,
because the physical world does not change that fast, which is not true about
the Web or online social networks, which change a lot faster. The commercial
focus helps to ground the research, and keep it practical.

Will network science lead to the development of network engineer-
ing? What research directions do we need to pursue to get there?

Validation is really important. In much of this domain validation is not taken
seriously. Validation will be different from one network to another. What is good
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validation is socially defined. Sometimes it takes a research community a long
time to figure this out.

Should we develop benchmark datasets to support network science?
What does it take to get them?

Benchmark datasets are necessary to promote the research. We have seen
examples of this, for example TREC. We can even aim at building infrastructure
to serve network science, for example the Network Workbench 6 from Indiana
University, School of Library and Information Science. There is a danger with
benchmark datasets of overfocusing the community on specific problems. We
need a process of generating datasets with known patterns, for example KDD.
Datasets are built for a specific purpose. Building a dataset is a lot of work.
Perhaps a set of goals for network science must be formulated before we discuss
benchmark datasets.

What are interesting goals for network science?
There are several tasks that can be identified. Clustering is one (of biological

data for example). There is a variety of algorithms and implementations, and
we need to define appropriate evaluation measures. Artificial datasets, where the
boundaries between classes are controlled, may have an important role. Datasets
have been used mostly for data fitting, which has the risk of overfitting a partic-
ular dataset. Finally, labelled datasets are needed, possibly by human judgment.

What claims can we make knowing the limitations of our network
sampling techniques in terms of time scale and completeness? In other
words, how do you figure out how sceptical to be when using data
known to have defects?

Sampling a real network is a hard problem in general, and requires solid
statistical expertise. Completeness is not achievable. Any sampling process may
introduce bias. This is a fascinating area for statisticians, especially because out-
liers are meaningful. Hard problems involve prediction of very rare events. New
methodologies are required, because of the datasets are massive and with many
features. Web phenomena tend to have long tails. The question of the stability
of observations needs to be considered. Special care is needed to establish the
limitations of any analysis. The problem of estimation of the number of indexed
pages by a search engine is addressed in [8]. Algorithm design must adapt to
the changing nature of the data, for example, to account for the emergence of
web spam.

Name your best open problem in this area
A variety of interesting problems was proposed: to come up with and test

a model of how the network structure and the content co-evolve; to study the
dynamics of graphs, including interaction between flows and connectivity; to in-
volve social scientists in social network analysis; to analyze the reasons why a
particular social networking service succeeds and to predict which of the many
players will eventually take over; to study searching and ranking, given the diver-
sity of indexed content on the Web; to address classical combinatorial problems
related to large social networks.

6 http://nwb.slis.indiana.edu/
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3 Summaries of Poster Presentations

Neighborhood Watch: Document Classification in Typed Graphs
Ralitsa Angelova, Max-Planck Institute for Informatics
Classification is a challenging problem with a broad impact on areas like ma-
chine learning, information retrieval, pattern recognition, image analysis and
bioinformatics. Recent research shows that incorporating relationships into the
classification process is beneficial but poses difficulties which, if carelessly ad-
dressed, degrade the classification result. One hard problem is how to make use of
the link structure in a heterogeneous environment. Such an environment is rep-
resented by a graph containing nodes of different types. Nodes of the same type
as well as nodes that belong to different types are connected by edges (links).
Different node types have different systems of possible class labels. The goal is to
assign to each node the best suitable label among its possible classes according
to a local likelihood and the node’s neighborhood in the graph. A relaxation
labeling approach is proposed for classification of heterogeneous graphs.

This is joint work with Prof. Gerhard Weikum.

Link Analysis Based Methods for Handling Abundance and Misrep-
resentation Over The Web
Amit Awekar, North Carolina State University
Broad aim of this work is to investigate how link analysis based methods can be
useful to deal with abundance and misrepresentation issues over the Web. An
algorithm SelHITS was introduced for answering broad-topic queries over the
Web. The author aims to apply the same approach to other topic oriented tasks
over the Web. Clustering hypertext repository is the current problem of interest.
The proposed approach is to iteratively modify the representation of documents
using link based ranking functions.

Towards Adaptive Web Search Engines
M. Barouni-Ebrahimi, University of New Brunswick
Web search engines efficiently surf the Internet and return the most relevant
pages to the users’ queries. However, the order of the recommended pages is not
always in accordance with the users’ priorities. The users needs to check the list
of the recommended pages to find one of their interests. On the other hand, the
queries sent by the users do not always corresponds to their intentions. The lack
of user knowledge or unfamiliarity with the specific keywords and phrases in the
domain knowledge leaves the user wondering about what phrases would be the
most related ones to his desire. The contribution of this research is threefold.
First, Complementary Phrase Recommender module suggests to the user a list
of complementary phrases for his uncompleted query. Second, Related Phrase
Advisor module provides a list of phrases related to the query segment that user
has entered. These two modules guide the user to enter the more related phrases
to his intention as a query. Third, Page Rank Revisor module refines the order
of the recommended documents prepared by a conventional web search engine
to help the user find the related web pages at top of the list.

This is joint work with Prof. Ali A. Ghorbani.
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Evaluating Web Search Quality
Maxim Gurevich, Technion, Israel
Objectively assessing search quality is of great interest both to end-users and
to search providers. Quality parameters like ranking quality, coverage of the
web, index freshness, topic- and domain-specific coverage, and spam resilience
are important for judging the effectiveness of search engines. Currently, search
quality is evaluated mainly by manual techniques, using anecdotal test data.
This makes the results difficult to reproduce and non-objective.

Random sampling is arguably the most efficient way to measure parameters
on huge data sets, like search engines. Along sampling from the whole web/index
of the search engine, sampling web pages from a given “topic” of the web/index
(i.e., web pages in some domain, topic, language, etc.) may be interesting. Such
samples can be used to measure the quality of search engines with respect to
specific segments and domains. Evaluating ranking of search engines is another
interesting area. Unlike current methods, which mainly rely on user studies, an
automatically computable metric would be more statistically accurate and easy
to reproduce. One idea is to use the latent human judgment in click-through data.
The metric may then be used to compare rankings of major search engines.

Use of k-cores to characterize graph local structure
John Healy, Dalhousie University
A k-core of a graph is the subgraph generated by recursively removing all nodes
with degree < k. This can be thought of as a weaker version of a clique. k-cores
are useful for pruning low importance vertices. ncreasing the value k eliminates
nodes resulting in a component either remaining in our graph, splitting into
multiple components, or being eliminated entirely. The resulting small directed
acyclic graph, capturing the evolution of components as k increases, reveals the
structure of a graph. The the k-core representation is used in order to find
which of several available generative models is the best description of a real
world graph, by developing a method of summarizing the component trees for
statistical comparison.

The Chromatic Number of Complex Networks
Paul K Horn, University of California, San Diego
The chromatic number of a graph, denoted χ(G) is a graph invariant which
is deeply tied to the structure of the graph, as well as other important graph
properties such as the independence number and clique number. The chromatic
number of complex networks is considered by modeling complex networks as
random graphs with given expected degree sequences through the G(w) model
introduced by Chung and Lu. A graph with a more general degree distribution
w = (w1, . . . , wn) is considered; letting w = (w1+. . .+wn)/n denote the average
expected degree. The work is based on a recent preprint of Frieze, Krivelevich
and Smyth, in particular a condition guaranteeing that χ(G(w)) = θ(w/ ln w);
furthermore it was shown that if w fails this condition too badly, that indeed
χ(G(w)) = ω(w/ log w). An improved lower bound on χ(G(w)) was also given.



12 W. Aiello et al.

Some related questions were investigated. The proposed conditions on when
χ(G(w)) = ω(w/ log w) seem to suggest a better indicator of the chromatic
number. Still open is the question of finding an asymptotic value of χ(G(w)).
Deeply related to this question are questions regarding the size and number
of independent sets in G(w). A deeper understanding of these issues is likely
necessary to asymptotically determine χ(G(w)) and is also interesting in its
own right.

Graph theory in interconnection networks
Navid Imani, Simon Fraser University
The focus of the research lies somewhere between distributed computing and
graph theory & enumerative combinatorics. The focus is on the problems arising
in a wide variety of networks ranging from interconnection networks for multi-
processor systems and massively parallel systems to mobile and sensor networks
and the WWW. Previous and on-going works by the author address well-known
problems in such networks such as Load Balancing), Resource Placement, In-
trusion detection, Distributed Data-Clustering, Combinatorial Properties of Ex-
isting and Newly Proposed Networks. Most papers involve theoretical modeling
of the above mentioned issues and have deep roots in graph theory, enumera-
tive combinatorics and algorithms. A current project involves network security
where the probabilistic behavior of networks is studied in the face of different
types of failures using a combination of approaches from probability theory and
combinatorics.

How NAGA uncoils: Searching with Relations and Entities
Gjergji Kasneci, Max-Planck-Institut für Informatik
The everlasting enrichment of the Web with certain as well as uncertain and
unstructured information calls for vertical search techniques which fulfill users’
needs for querying the Web in a more precise way. Going one step beyond key-
word search and allowing the specification of contextual concepts for keywords
or relationships holding between them clears the way for new attractive and
promising possibilities.

NAGA, a semantic search engine for the Web, was presented, which ex-
ploits relationships between entities for precise query specification and answer-
ing. NAGA’s trump card is its ontological knowledge graph built on top of a
refined data model which in turn serves as a basis for NAGA’s query model
and answer computation algorithms. NAGA extracts facts from Web pages and
stores them into the above mentioned knowledge graph. Not only the extracted
facts are recorded, but also a confidence measure for each fact is computed and
maintained. NAGA provides a query language which can be capable of express-
ing queries ranging from simple keyword queries to complex graph queries which
utilize regular expressions over relation names. NAGA’s answer model is based
on subgraph matching algorithms which in turn make use of intuitive scoring
and ranking mechanisms. The approach we follow represents a general approach
towards the semantic processing of information extracted from any unstructured
text corpora.
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This is joint work with Maya Ramanath, Fabian Suchaneck, and Gerhard
Weikum.
Improving the Random-Surfer Model with Anonymized Traffic Data
Mark Meiss, Indiana University
Link-analytical algorithms for ranking Web search results such as Google’s
PageRank derive their power from the implicit statement of relevance made
when the owner of one page decides to link to another. However, such meth-
ods are undermined by the fact that not all links are created equal: some are
used much more often than others. The random-surfer model of PageRank as-
sumes uniform distributions for starting locations, outgoing links to follow, and
jump probabilities, but the behavior of actual surfers may be quite different.
The aim of the present research is to gather large volumes of ”click data” from
anonymized packet captures of real HTTP sessions, analyze the extent to which
this data does not reflect the random-surfer model, and develop a more sophis-
ticated stochastic model in which the random distributions are based on the
traffic patterns of actual users.

Neighborhoods in the Web Graph
Isheeta Nargis, Memorial University of Newfoundland
The World Wide Web can be represented by a large directed graph in which
each vertex corresponds to a web page, and in which there is an arc from one
vertex to another if there is a hyperlink between the corresponding web pages.
It is infeasible to store and manipulate the entire Web Graph, so a focused
approach is taken. Beginning with a specified web page, it is determined which
other pages are in close proximity to it, and then the subgraph of the Web Graph
is constructed that is induced by these pages (i.e. a Neighborhood Graph for the
given initial vertex). Properties of these neighborhood graphs were investigated.

Communities in Large Networks: Identification and Ranking
Martin Olsen, University of Aarhus
The problem of identifying and ranking the members of a community in a very
large network with link analysis only is studied, given a set of a (few) represen-
tatives of the community.

The concept of a community is defined justified by a formal analysis of a
simple model of the evolution of a directed graph. It is shown that the problem
of deciding whether non trivial communities exists is NP complete. Nevertheless
experiments show that a very simple greedy approach can identify members of
a community in the Danish part of the www graph with time complexity only
dependent on the size of the found community and its immediate surroundings.

The members in a community are ranked by performing a computationally
inexpensive calculation which is a “local” variant of the PageRank algorithm.
The mathematical model behind the ranking is a small Markov Chain with the
community as its state space forming a valuable basis for analyzing consequences
of changes of the link structure.

Results are reported from a successful experiment on identifying and ranking
Danish Computer Science sites.
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Growing and classical protean graphs (new probabilistic models of the
Web)
Pawel Pralat, Department of Mathematics and Statistics, Dalhousie University.

The Web may be viewed as a graph each of whose vertices corresponds to
a static HTML web page, and each of whose edges corresponds to a hyperlink
from one web page to another. Recently there has been considerable interest in
using random graphs to model complex real-world networks to gain an insight
into their properties.

An extended version of a new random model of the web graph is proposed
in which the degree of a vertex depends on its age. The differential equation
method is used to obtain basic results on the probability of edges being present.
From this it is possible to characterize the degree sequence of the model and
study its behaviour near the connectivity threshold.

The classical version of the model is also presented and the limit distribu-
tion of the ‘recovery time’ for connectivity near the connectivity threshold is
characterized, and the diameter of the giant component.

This is a joint work with Tomasz Luczak and Nicholas Wormald.

Probabilistic models for concept discovery in unstructured text data
Mahdi Shafiei, Dalhousie University
Using probabilistic models for document and term clustering, document model-
ing and co-clustering has shown some major benefits over the traditional meth-
ods in recent years. In data mining research, these problems along with other
problems including dimensionality reduction, topic segmentation, topic tracking
and detection are closely related. These are also the fundamental building blocks
of approaches to several applied problems including automatic summarization
and machine translation. However, these problems have been approached inde-
pendently of one another by the research community. The aim of the author is
to bring all these interrelated problems under a single statistical model, and to
exploit their interrelations. In previous work, hierarchical Bayesian models have
been developed for clustering terms and documents. By the topic segmentation
capability embedded in the model, the goal is to improve the clustering perfor-
mance of the previous model on words and documents. Using the probabilistic
Bayesian approach makes it possible to extend the proposed approach to a model
capable of modeling topic tracking and shift in a principled way.

Shrack: A Pull-Only Peer-to-Peer Framework for Sharing and Track-
ing of Research Publications
Hathai Tanta-ngai, Dalhousie University
Shrack—a pull-only peer-to-peer framework for document sharing and tracking—
is presented. Shrack is designed to support researchers in forming direct collab-
orations to autonomously share and keep track of new research publications
based on their interests. A pull-only information dissemination protocol is used
for peers to learn about document metadata of new research publications from
peers having similar interests. A user’s interest is represented by an automatically
learned profile. Document metadata are viewed as semi-structured documents.
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Peers first join the network using contacts acquired from real world collabora-
tion, similar to exchanging email addresses or URLs. These contacts are used
as initial peer neighbours. Each peer can use the disseminated information to
build a local view of a semantic overlay network of peer interests, which repre-
sents groups of peers having similar semantic interests. Each peer can later use
the semantic overlay network to find new contacts of peers having a particular
interest, as well as search for documents archived by other peers. An overview
of the architecture of the system and research challenges were presented.

Privacy in Databases
Dilys Thomas, Stanford University
The explosive progress in networking, storage, and processor technologies has
resulted in an unprecedented volume of digital information. This has resulted
in an increased real-time processing of this digital information in streaming sys-
tems. In concert with this dramatic and escalating increase in digital data and
its real-time processing, concerns about privacy of personal information have
emerged globally. The ease at which data can be collected automatically, stored
in databases and queried efficiently over the internet has paradoxically worsened
the privacy situation, and has raised numerous ethical and legal concerns. These
concerns extend to the analytic tools applied to data. Problems arising from
private data falling into malicious hands include identity theft, stalking on the
web, spam etc. In the digital age, large amounts of confidential information are
accessible to hackers or insiders. Safeguards to protect the privacy of individ-
uals, and security of society are becoming crucial for the effective functioning
of the Internet. Privacy enforcement today is being handled primarily through
legislation. The aim of this work is to provide technological solutions to achieve
a tradeoff between data privacy and data utility.

Web Mining putting emphasis on Web Graph Evolution monitoring
Akrivi Vlachou, Athens University of Economics and Business
The general focus of the research is on web mining and in particular on link
analysis and techniques for web graph representation. The web is a highly dy-
namic structure constantly changing. One of the biggest challenges is that of
searching the vast amounts of web graph data. The research area of web search
inherently involves the issue of page ranking. Research problems related to the
web graph evolution are addressed aiming at valid PageRank predictions and
monitoring the web-graph change. Additionally, a compact representation of the
web graph is envisioned, capitalizing on the changes of the web graph during
time. Such a representation will be used to effectively answer historical queries.

Statistical Analysis of Dynamic Communication Graphs
Xiaomeng Wan, Dalhousie University
Communication networks can be modeled as a dynamic graph with time-varying
edges. Real-life events cause communications that are unusual in either volume or
pattern in the graph. Given such a dynamic graph with embeded events, can we
detect when and where those events occur? The answer for this question is cru-
cial for counter terrorism, network surveillance and traffic management. Most
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event detection methods only focus on network-wide events. However, events
associated with only a few individuals are more common and of significant in-
terest, as well. In this project, a method is explored to detect those events with
only local impacts. Three metrics to characterize communications from different
viewpoints are proposed. Based on the variations of these metrics over time,
local events are detected and characterized. Experiments on email data from
our faculty show that these metrics are effective in identifying events, and the
signals of the three metrics, combined in different ways, makes it possible to
discriminate different types of events.

Dual Dynamic Programming and Reinforcement Learning
Tao Wang, University of Alberta
The dual approach to dynamic programming and reinforcement learning is inves-
tigated, based on maintaining an explicit representation of stationary distribu-
tions as opposed to value functions. A significant advantage of the dual approach
is that it allows one to exploit well developed techniques for representing, ap-
proximating and estimating probability distributions, without running the risks
associated with divergent value function estimation. A second advantage is that
some distinct algorithms for the average reward and discounted reward case
in the primal become unified under the dual. A modified dual of the standard
linear program is presented that guarantees a globally normalized state visit
distribution is obtained. With this reformulation, novel dual forms of dynamic
programming are derived, including policy evaluation, policy iteration and value
iteration. Moreover, dual formulations of temporal difference learning are de-
rived to obtain new forms of Sarsa and Q-learning. Finally, these techniques
are scaled up to large domains by introducing approximation, and develop new
approximate off-policy learning algorithms that avoid the divergence problems
associated with the primal approach. It is shown that the dual view yields a
viable alternative to standard value function based techniques and opens new
avenues for solving dynamic programming and reinforcement learning problems.

Sketching Landscapes of Page Farms
Bin Zhou, Simon Fraser University, Canada
The World Wide Web is a very large social network. It is interesting to analyze
the general relations of web pages to their environment. For example, as rankings
of pages have been well accepted as an important and reliable measure for the
utility of web pages, it is worthwhile to understand generally how web pages
collect their ranking scores from their neighbor pages.

Such information is not only interesting but also important for a few Web
applications. (i) for Web spam, we can imagine identifying pages that receive a
considerable amount of their ranking scores from bad pages; (ii) for Web page
categorization, we could determine how much of page’s ranking score comes
from reputable pages from certain domains (e.g., the database and data mining
community highly regards my page, but the network security community does
not); (iii) for simple Web page characterization, it could be interesting to know
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that FedEx receives considerable link support from certain partner companies,
etc.

In this research, the environment of web pages is modeled and its general
distribution is analyzed. A novel web structure mining problem is studied, mining
page farms, and its application is illustrated in link spamming detection. The
general ideas and major contributions so far are as follows.

– A page farm is the set of pages contributing to (a major portion of) the
PageRank score of a target page. The computational complexity of find-
ing page farms is shown to be NP-hard. Then, a practically feasible greedy
method is developed to extract approximate page farms.

– The statistics of landscapes of page farms are empirically analyzed using
over 3 million web pages randomly sampled from the web. We have a few
interesting findings.

– The application of page farms in spamming detection is investigated. Two
spamicity measures are defined which can be used to detect spam pages,
and evaluated on a real data set. The experimental results show that the
methods are effective in detecting spamming pages.
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1 Overview

For barely a decade now the Web graph (the network formed by Web pages
and their hyperlinks) has been the focus of scientific study. In that short a time,
this study has made a significant impact on research in physics, computer science
and mathematics. It has focussed the attention of the scientific community on all
the different kinds of networks that have arisen through technology and human
activity; some speak of a “new science of networks”. It has brought the compu-
tational and deductive power of computer science to the study of the complex
social networks formed by inter-human relationships. And, it has given birth to
new branches of research in different areas of mathematics, most notably graph
theory and probability.

The key event that focused attention on the link structure of the Web was
the invention, by Brin and Page, of the PageRank algorithm [4]. PageRank is a
method of ranking Web pages that is derived entirely from information about
which page has hyperlinks to what other page, as opposed to what content of
Web pages have. The phenomenal success of Google, the search engine built by
Brin and Page, led to the realization that a lot of the information on the Web is
contained in its link structure. Naturally, the Web graph, as this link structure
came to be called, became the focus of scientific study.

Two experimental studies aimed to explore the Web graph. An extensive
study by Broder et al. [5] analyzed a Web crawl obtained by the search en-
gine Altavista. The second study, by Barabasi and Albert, used a more modest
data set consisting of all URLs in the Web domain of Notre Dame University
(.nd.edu). The studies reported similar findings. The most remarkable finding
was that the distribution of the in-degrees (number of links pointing to a page)
follows a power law. In particular the proportion of pages with degree k is pro-
portional to k−γ . A power law distribution has a heavy tail, which means that
pages with high in-degree are relatively common.

Barabasi and Albert coined the term ”scale-free network” for networks that
exhibit a power law degree distribution. They proposed a growing graph model
for such networks. The model is still one of the most widely used to explain
the growth of self-organizing networks, and to simulate scale-fee networks. The
leading principle of the model is that of preferential attachment: new nodes
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join the network, and link to existing nodes via a random process where the
probability that an existing node receives a link is proportional to its current
degree. In other words, nodes with higher degree have a greater chance of an
increase in degree. It has been shown heuristically in [1], and more rigorously in
[2] that this kind of reinforcement mechanism does produce a power law degree
distribution. However, many aspects of this model have since been found to be
not in accordance with the observed properties of real-life networks, as we will
see in the review of Willinger’s talk below. A variety of different models have
been proposed, either based on variations on the preferential attachment theme,
or on different principles such as copying, trade-off of contradictory objectives,
and geometric embeddings of the nodes. We refer to [3] for an overview.

In this workshop, clearly the PageRank algorithm was still a central theme.
The speakers presented various new angles to this theme. A general framework for
ranking algorithms was presented by one of the invited speakers, and in this frame-
work PageRank can be shown to be among the optimal ranking algorithms. Other
speakers investigated the relation between PageRank and in-degree, both from an
experimental and an analytical viewpoint. Another invited speaker showed how
PageRank can be used as a tool in identifying graph communities. A third invited
speaker investigated the question whether the use of PageRank to present search
results leads to a reinforcement loop, where the ranking algorithm itself will lead
to increased rank for already highly ranked pages.

Another central theme was graph modelling. One of the invited speakers, Fan
Chung, is a central authority on graph modelling, and while her talk for WAW
did not directly address graph modelling, she gave another talk in the associated
winterschool where she presented a variety of important and challenging open
questions on graph modelling. Another invited speaker questioned the premise
of many of the early graph models, namely preferential attachment, and pre-
sented convincing arguments to persuade modellers to give greater weight to
other aspects of the network, beyond the degree distribution. Other speakers
analyzed various aspects of a variety of different random graph models, such
as models obtained through a local optimization criterium that depends on an
underlying geometry, and a model obtained through random perturbations of a
pre-determined graph.

A variety of other themes was addressed by the contributed speakers and poster
presenters. To name but a few: there were presentations on Web spam detection,
network sampling, community identification, automatic Web-Site summarization,
and Web mining based on both content and link structure. During the workshop,
numerous informal discussions took place, and quite a few led to new collabora-
tions and ideas. Also, the workshop inspired a number of participants to initiate
the organization of WAW 2007, which will take place in San Diego.

2 Ranking of Search Results

With the enormous quantity of information now available on the Web, it is clear
that information retrieval is only a minor part of the task of a search engine.
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Most important is the ranking of the retrieved results. In particular, since most
users do not browse beyond the first page of search results, the selection of the
top ten of highest rank pages is crucial. The link-based PageRank algorithm has
proven its worth through the Google search engine. Google’s ranking method is
top-secret, but it is clear that PageRank is still central to its success.

The PageRank algorithm ranks Web pages according to their PageRank value.
The PageRank value of page i is a number between 0 and 1 denoted by PR(i).
The original description of PageRank presented in [4] is as follows: PR is a vector
indexed by all the nodes in a graph that satisfies

PR(i) = c
∑

j→i

1
dj

PR(j) + (1 − c),

where dj is the out-degree (number of outgoing links) of node j, and c is a
constant between 0 and 1, often called the teleportation factor. The vector PR
is the stationary distribution of a Markov chain representing a random surfer:
at each step, the surfer either follows one of the links of the current page with
equal probability, or “teleports” to any existing page with equal probability. The
probability with which the first option is chosen is given by c. If this process is
ergodic the PageRank vector is the principal eigenvector of the transition matrix
of this process, the socalled PageRank matrix.

Since its original introduction, many aspects and variations of the PageRank
algorithm have been studied (for an overview, see [6]. Also, a number of other
link-based ranking algorithms have been proposed. We note the HITS algorithm
by Jon Kleinberg, which was developed around the same time as PageRank. The
HITS algorithm assigns two values to each node, a hub value and an authority
value. If A is the incidence matrix of the graph (so that Aij = 1 iff (i, j) is an
edge), then the vector of hub values is the principal eigenvector of AAT , and the
vector of authority values is the principal eigenvector of AT A. Hub- and author-
ity values can be calculated iteratively, similar to the PageRank computation.
Another ranking algorithm is SALSA, a stochastic algorithm that combines ideas
from PageRank and HITS.

The question whether PageRank has a self-reinforcing effect was discussed in
an invited talk titled Googlearchy of Googlocracy? How search affects Web traffic
and growth by Filippo Menczer of Indiana University. Menczer explained that
search engines bias the Web traffic through their ranking strategy. Namely, it is
known that most Web users will rely on a search engine to navigate the Web,
and are likely to view only the first page of results returned by the search engine.
Hence, they will only visit the handful of pages that are most highly ranked.

Since Google is by far the most popular search engine, and is known to rely
on the PageRank algorithm for its ranking, some have argued that this creates
a vicious cycle where pages with a high PageRank are more visible to creators
of new pages, and thus more likely to get linked to. The increased number of
in-links, in turn, increases the page’s PageRank score, thus leading to a “rich-
get-richer” situation where a small number of pages will dominate the high ranks
of the search engine.
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Menczer convincingly showed that, contrary to these claims and his own
intuition, the use of search engines actually has an egalitarian effect. Empir-
ical evidence and theoretical analysis, carried out by Menczer in collaboration
with Santo Fortunato, Alessandro Flammini, and Alessandro Vespignani, showed
that, in fact, search engines mitigate the attraction of popular pages, and direct
more traffic toward less popular sites.

The PageRank algorithm also was the topic of a number of contributed talks.
Specifically, talks by Nelly Litvak (Twente) and Alessandro Flammini (Indiana)
examined the relation between PageRank and in-degree from different angles.
Litvak considered the question from a theoretical viewpoint, employing sophisti-
cated tools from probability theory. Flammini’s work combined experimentation
with a more heuristic mean field analysis.

Fan Chung Graham (UCSD), another invited speaker, described how PageR-
ank can be used to partition a graph. Graph partitioning is an important tool
for identifying Web communities. In turn, identifying Web communities helps
fine tune search results, and can increase our understanding of the Web. Chung
showed how the ordering of the nodes produced by the PageRank vector reveals
a location where the graph can be cut with minimal loss of “flow” through the
graph.

Finally Soumen Chakrabarti, of the Indian Institute of Technology in Mum-
bai (IITB), considered in his invited talk the problem of finding an appropriate
ranking in the more general setting of entity-relation (E-R) graphs. The gen-
eral framework is still that of nodes connected by links, and text associated
with each node, but now both nodes and links can be annotated, assigned to
categories, etc. However, the extractors and annotators may be imperfect and
incomplete. In this sense, E-R graphs are a representation of semi-structured
text. This representation makes ranking difficult: nodes and edges have diverse
semantics and are not equally important. Their importance may even vary by
query. Consequently, there is no single successful ranking function for general
E-R graph search applications. On the other hand, the information is too com-
plex for completely manual tuning. Chakrabarti explained how machine learning
techniques can be employed to automatically tune the ranking function to the
data and query at hand.

3 Models for the Web Graph and Other Complex
Networks

A second theme of the workshop was that of stochastic models for the Web graph
in particular, and self-organizing networks in general. A self-organizing network
is an evolving network, formed in a de-centralized manner by a number of in-
dividual agents. Each agent determines its own link environment, usually with
only limited knowledge of the entire network. The World Wide Web is a prime
example of a self-organizing network: the links to other Web pages that a given
page contains are determined by the ”agent” creating the page, not by any cen-
tral authority. Other examples of self-organizing networks are: networks formed
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by scientific papers and their citations, law cases and their references, social net-
works (both of humans and animals), and networks modelling the interaction of
proteins in a cell (protein-protein interaction, or PPI, networks).

As mentioned in the introduction, the first generation of models was mainly
based on the principle of preferential attachment. In models based on preferential
attachment, new nodes joining the network choose a pre-determined number of
neighbours, chosen with probability proportional to the degree. In other words,
nodes with high degree have a better chance of receiving a link to the new node.
The first use of preferential attachment as a method to generate graphs with a
power law was first proposed by [1]. More advanced models based on the principle
can be found in [7,8].

The invited talk by Walter Willinger, of AT&T Research Labs, sharply ques-
tioned the use of the preferential attachment principle as a catch-all to explain
power law graphs. In fact, Willinger started out with a criticism of the various
studies that measured power law degree distributions in various real-life networks,
especially those associated with the internet. Namely, accurate measurements of
connectivity-related parameters of the Internet are notoriously hard to obtain.
Willinger then argued that the evolution of the internet is more likely driven by
restrictions that arise from the technological constraints of various components
that determine the physical internet. He proposed an alternative approach to mod-
elling, that relies heavily on domain knowledge. This approach is capable of
explaining a wide range of diffeerent system behaviours and provides a basis for
exploring when and when not to expect a power law degree distribution.

The second part of the invited talk by Filippo Menczer also addressed the
question of modelling. After discussing the mutual interaction of the ranking of
search results by search engines and Web user traffic, as described in the previous
section, Menczer introduced a graph generation model based on the principle of
search-driven network growth. This model is based on a principle of preferential
attachment based on a ranking of the nodes. In a moment of synergy, it turned
out that one form of this model was a special case of a graph model presented
in a poster by Pawel Pralat. Discussions between Menczer and Pralat have since
led to new research combining both ideas.

Several contributed papers and posters also had graph models as their topic.
Abraham Flaxman presented a talk on how the addition of a random perturba-
tion to a given graph influences the expansion properties. This work can lead to
tools to analyze sensitivity of traffic flow to small changes in network topology.
Ross Richardson investigated a geometric graph model based on an optimization
criterium which is a trade-off between optimization of global and local connec-
tions. Anthony Bonato gave a talk on the infinite limit graphs that arise when
time is going to infinity in graph generation models, and on what these infinite
limits can tell us about the model. Posters by Gao and Pralat presented new
models, while a poster by Healy gave a new method to evaluate and compare dif-
ferent models. The posters by Healy and Pralat were awarded prizes in a poster
contest where all WAW participants were judges.



Workshop on Algorithms and Models for the Web Graph 23

4 Overview of the Workshop

This workshop falls into a series of workshops on the Web graph: WAW ’02 in
Vancouver, WAW ’03 in Hungary, and WAW ’04 in Rome. The series was started
by Andrei Broder as a forum for the latest research developments related to the
Web graph in particular, and other complex networks in general. It is important
that such a forum exists, because the interdisciplinary nature of this type of
research has the unfortunate effect that it is often hard to find the right audience
for presenting the results.

Researchers in the emerging area of algorithms and models for the Web graph
are scattered geographically, and belong to disciplines with quite different acad-
emic cultures. The excellent research environment at BIRS was ideally suited to
foster an understanding between people from different backgrounds. Discussions
over lunch and dinner led to interesting synergies. The informal atmosphere fos-
tered by the BIRS facilities fostered a climate that favoured an active audience.
Talks were often interrupted by questions, which then led to discussions that
were continued during the breaks.

Young researchers had a chance to showcase their research during a poster
session. All participants in the workshop actively participated in the poster ses-
sion, and the keynote speakers and other senior researchers naturally assumed a
mentoring role and offered comments and suggestions.

In all, we believe the workshop highly successful, and we are grateful to BIRS,
MITACS, Genieknows.com and Yahoo Inc. for their help in making it happen.

References

1. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 28,
509–512 (1999)

2. Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a scale-
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Abstract. This paper studies the expansion properties of randomly per-
turbed graphs. These graphs are formed by, for example, adding a ran-
dom 1-out or very sparse Erdős-Rényi graph to an arbitrary connected
graph.

The central results show that there exists a constant δ such that when
any connected n-vertex base graph Ḡ is perturbed by adding a random
1-out then, with high probability, the resulting graph has e(S, S̄) ≥ δ|S|
for all S ⊆ V with |S| ≤ 3

4n. When Ḡ is perturbed by adding a ran-
dom Erdős-Rényi graph, Gn,ε/n, the expansion of the perturbed graph
depends on the structure of the base graph. A necessary condition for
the base graph is given under which the resulting graph is an expander
with high probability.

The proof techniques are also applied to study rapid mixing in the
small worlds graphs described by Watts and Strogatz in [Nature 292
(1998), 440–442] and by Kleinberg in [Proc. of 32nd ACM Symposium
on Theory of Computing (2000), 163–170]. Analysis of Kleinberg’s model
shows that the graph stops being an expander exactly at the point where
a decentralized algorithm is effective in constructing a short path.

The proofs of expansion rely on a way of summing over subsets of
vertices which allows an argument based on the First Moment Method
to succeed.

1 Introduction

Developing models of complex networks has been a major industry in the fields
of physics, mathematics, and computer science during the last decade. Empir-
ical studies of many large networks gleaned from the real world have revealed
that, unlike the classical models of Erdős-Rényi random graphs developed for
applications to probabilistic combinatorics, many of the complex networks which
surround us today have high clustering coefficients and power-law degree distri-
butions. This observation has driven the development of numerous alternative
distributions for random graphs, which often are described by some generative
procedure.

Unfortunately, it is much easier to propose a generative procedure than to
refute one, which has led to the preponderance of models available today. How-
ever, the copious models of real-world graphs may not withstand the test of time
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any better than the Erdős-Rényi distribution. This motivates the approach pur-
sued in the present paper. Instead of studying a particular model for generating
graphs with the hopes of finding it “more realistic” than previously proposed
models, this paper considers an approach for incorporating randomness into
network modeling that is less model-specific.

In this paper, a complex network is viewed as composed of a base graph
and a random perturbation. The general goal in this framework is to show that
some property is likely to hold for a wide variety of base graphs and under a
very gentle random perturbation. For example, [1] shows that if a network is
generated from any connected base graph on n vertices, perturbed by taking
the symmetric difference with εn random edges, then, whp1, if the network is
connected then it will have diameter O(ε−1 log n).

This directly extends Bollobás and Chung’s pioneering study of a cycle plus
a random matching [2], and can be viewed as work in the line of “How many
random edges make a dense graph Hamiltonian?”, and subsequent studies of the
effects of adding a few random edges to dense graphs [3,4,5]. It is also similar
to the smoothed analysis of algorithms introduced by Spielman and Teng in
[6], which has been used to explain why algorithms perform better in practice
than worst-case bounds predict. Also similar are the hybrid graphs studied in
[7] which explicitly model long and short edges.

In addition to the perturbation models like those considered on sparse random
instances in [1], this paper will consider non-uniform perturbations, in the spirit
of Jon Kleinberg’s small-world model [8] and long-range percolation in finite
graphs studied in [9,10,11], and also the graph which both these models build
upon, the small-world model of Watts and Strogatz [12].

1.1 Results and Applications

The main technical development in this paper is a technique for understanding
when randomly perturbed graphs exhibit expansion properties. This is motivated
by the success of expansion bounds on more traditional random instances. For
sufficiently dense Erdős-Rényi graphs, the First Moment Method provides a sim-
ple way to obtain a whp lower-bound on expansion. This paper provides a new
method of accounting that permits a similar First-Moment-Method approach to
be employed on randomly perturbed graphs.

For clear presentation, this new application of the First Moment Method is
presented in the proof of an expansion property for a random graph G formed
by perturbing any connected graph Ḡ by adding a random 1-out (which is the
random graph formed by adding an edge from each vertex to another vertex
chosen uniformly at random, and then ignoring the directions of the edges).

Theorem 1. For any sufficiently small δ > 0, for any n-vertex connected graph
Ḡ, and for R ∼ Gn,1-out, the perturbed graph G = Ḡ+R has the following property
whp: for all S ⊂ V with |S| ≤ 3

4n, at least δ|S| edges go between S and S̄.

1 In this paper with high probability (whp) means that a sequence of events {En} has
Pr[En] → 1 as n → ∞.
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Table 1. Conditions for expansion under several perturbations

Perturbation Expander whp?

1-out Yes, for any connected Ḡ
Gn,ε/n Not if Ḡ has a bad partition

Watts-Strogatz Small World Not if Ḡ has a bad partition
Kleinberg Small World Yes, for any conn. Ḡ, if r < rmax(Ḡ)

This technology is also applied to similar random graphs, to yield results sum-
marized in Table 1.

1.2 History of Expansion in Random Graphs

A close connection between edge expansion, vertex expansion, spectral gap, and
mixing time has emerged over the last 40 years [13,14,15,16,17]. Through this
link, many different results on random graphs can be related to expansion proper-
ties. In regular and nearly-regular random graphs, bounds on the second-largest
eigenvalue of the adjacency matrix give bounds on expansion, [18,19,20,21,22]. In
a graph with a power-law degree distribution or other far-from-regular graphs,
the eigenvalues of the adjacency matrix are not necessarily related to eigenvalues
of the Laplacian and expansion. Both have been investigated theoretically and
experimentally in recent years [23,24,9,25,26,27].

In the empirical study of complex networks occurring in the real world, exam-
ining Laplacian eigenvalues has revealed that some real networks are expanders
and others are not [28,29]. This has led to the development of web graph models
which specifically avoid being good expanders [30].

Algorithmically, there are many benefits to knowing that a graph is an ex-
pander (for example, rapid mixing, disjoint paths and routing, and robustness
to attacks) and there are many other benefits to knowing that a graph is not
an expander (for example, high-quality cuts, divide-and-conquer algorithms, and
compressing data). Expansion may be less universal to real-world graphs than
other properties observed empirically like local clustering and power-law degree
distributions.

1.3 Notation

Undirected edges are sets of 2 vertices, but edge {u, v} will be abbreviated as
uv when it is not confusing to do so. For any graph H , let E(H) denote the
edge set of H , let V (H) denote the vertex set of H , and for sets S, T ⊆ V (H),
let eH(S, T ) denote the number of edges between S and T in H , and let eH(S)
denote the number of edges in the graph induced by vertex set S (the induced
graph is denoted H [S]). Let degH(v) denote the degree of v in H . The subscripts
for e(S, T ), e(S), and deg(v) will be omitted when referring the graph G if it is
not too confusing to do so.
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1.4 Distributions for Random Graphs

Perturbed graph 1 (P1): The randomly perturbed graph that appears in
Theorem 1 is a random graph generated by starting with base graph Ḡ and
adding a random 1-out (Gn,1-out is the distribution of random graphs where
every vertex chooses a neighbor uniformly at random and adds an edge to it.)
The random graph G = Ḡ + R where R ∼ Gn,1-out is studied primarily to
illustrate the central technique of this paper, although it is a reasonably small
perturbation. On average it changes the degree of every vertex by 2.

Perturbed graph 2 (P2): In the context of studying the effects of randomness
in complex networks without making drastic assumptions about the distribution
of the randomness, it would be better to use a perturbation that does not change
the base graph as much as a 1-out does. This can be accomplished by starting
with base graph Ḡ and adding a sparse Erdős-Rényi random graph (Gn,ε/n is the
distribution of random graphs where each of the

(
n
2

)
candidate edges appears

independently with probability ε/n.) The random graph G = Ḡ + R where
R ∼ Gn,ε/n is studied in [1], which shows that whp diam(G) = O(ε−1 log n).
Since, on average, this perturbation changes the degree of every vertex by only
ε, the local effects of the perturbation are quite minimal.

Small-world graph 1 (SW1): The small-world model of Watts and Strogatz
is generated by starting with a base graph Ḡ and an ordering of the edges E(Ḡ)
(in [12], Ḡ is a ring of n vertices with each vertex connected to its k nearest
neighbors with k � ln n, and the edges are ordered in a particular way that is
implicit in the description of the perturbation). The base graph is perturbed in
the following fashion: proceed through the edges according to the ordering, and
for each edge, with probability p, randomly rewire this edge to a vertex chosen
uniformly at random, with duplicate edges forbidden; otherwise leave the edge
in place.

Small-world graph 2 (SW2): Kleinberg’s small-world graph is a random
digraph generated by starting with a base graph Ḡ and a distance function
d(·, ·) on the vertices of V (Ḡ) (in [8], Ḡ is primarily taken to be an n × n
grid, where V = [n]2, and uv is an edge if d1(u, v) ≤ p; the distance function
is taken to be the �1 norm). The base graph is perturbed by adding q ran-
dom edges out of every vertex independently at random, where the i-th edge
out of vertex v is denoted by ev,i and is chosen according to the distribution
Pr[ev,i = vw] = d(v, w)−r

/(∑
u�=v d(v, u)−r

)
for all w �= v (here r is a parameter

of the model).

Comparison of SW1 and SW2: SW2 is often viewed as a generalization of
SW1. The big difference is that, while SW1 rewires edges uniformly at random,
SW2 includes the parameter r, which controls the degree to which the underlying
network is willing to try new things.

There is also a subtle difference between these two models. While SW1 ran-
domly rewires each edge of the underlying graph with probability p (which, for a
d-regular graph, results in dp random edges expected out of each vertex), SW2
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adds q random edges out of each vertex. This sounds very similar for q = dp, and
it is similar, but it is also different, in a very important way. Graphs from the
SW2 distribution are expanders whp, while graphs from the SW1 distribution
are not necessarily so.

1.5 Outline of What Follows

Section 2 proceeds with the proof of Theorem 1, which uses a new method of
First-Moment-Method accounting to show that G = Ḡ + R has e(S, S̄) ≥ δ|S|
for all S whp when R is a 1-out (P1).

Section 3 considers the more gentle perturbation, where R is distributed as
Gn,ε/n instead of as a 1-out. In this case, G is not necessarily an expander,
and a criteria for Ḡ of having a “bad partition” is shown to prevent G from
satisfying the expansion property whp. The same results are also shown to
hold for Watts-Strogatz random graphs (SW1). In particular, when Ḡ is a cycle
with edges connecting each vertex to its k nearest neighbors, or when Ḡ is a
d-dimensional grid, it contains a bad partition and hence the perturbed graph
is not an expander whp.

Section 4 considers the SW2 perturbation, where Ḡ is perturbed by a non-
uniform q-out, in which each random edge out of v chooses a vertex w with
probability related to distance from v to w under some distance function d(·, ·),
according to Pr[ev,i = vu] = d(v, u)−r

/∑
w �=v d(v, w)−r . For q = 1 and r = 0,

this reduces to the base-graph-plus-1-out considered in Section 2, and the tech-
niques from that section are shown to extend for r > 0 for grid-like graphs.
These techniques show that when Ḡ is a d-dimensional grid, G is an expander
for any r < d, and furthermore, there is a threshold at r = d, at which point G
is no longer an expander.

This shows that the transition from expanding to non-expanding occurs pre-
cisely at the point where a local algorithm can find polylogarithmic length paths
in the network.

2 Perturbing Any Connected Ḡ with a 1-Out Yields
Expander

The proof of Theorem 1 is an application of the First Moment Method, and
relies on a moderately precise calculation of the expected number of sets S which
violate the bound e(S, S̄) ≤ δ|S|. This is achieved by considering separately the
sets with |S| ≤ γn and |S| > γn for an appropriately chosen constant γ.

Proof of Theorem 1: A straightforward way to obtain an upper bound on the
probability that there exists a set S ⊆ V with |S| ≤ 3

4n and e(S, S̄) ≤ δ|S| is the
following: let ZS be an indicator random variable for the event that a particular
set S satisfies these conditions, and calculate an upper bound on the expected
value of the sum Z =

∑
S⊆V ZS . Showing that the expected value tends to 0 as

n tends to ∞ yields a bound which proves the theorem, because for any non-
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negative random variable, Pr[Z ≥ 1] ≤ E[Z] (this deceptively simple inequality
is honored with the title “The First Moment Method”; see, for example, [31]).

Unlike the simple application of the First Moment Method, which is sufficient
to show that G ∼ Gn,k-out is likely to be an expander when k is a large enough
constant, to make this calculation yield results about a perturbed graph will
require considering the structure of the set S in the base graph Ḡ.

The key trick is to use a special tour of Ḡ to describe each set S; let T be
a spanning tree of Ḡ, and let W = (e1, e2, . . . , e2(n−1)) be an Euler tour of the
multigraph formed by including every edge of T twice. That is to say that W
is a sequence of edges which gives a circuit in G that traverses each edge of T
exactly 2 times. Such a tour exists because doubling every edge of T makes the
degree of every vertex even. For any set S, let IS ∈ {0, 1}2(n−1) be the incidence
vector with IS(i) = 1 iff ei ∈ E(T [S]). Let e(IS) = |{i : IS(i) �= IS(i + 1)}|
denote the number of times the Euler tour crosses the boundary of S. There is
a direct relationship between eT (S, S̄) and e(IS). Since each edge of T appears
twice in W ,

eḠ(S, S̄) ≥ eT (S, S̄) ≥ e(IS)/2. (1)

To obtain a bound on the expected value of the sum
∑

S:|S|=s ZS , let

Ss,k = {S : |S| = s, e(IS) = k}

denote the collection of sets S of size s for which T crosses the boundary of S
exactly k times. Since every S maps to a unique IS , it follows that

|Ss,k| ≤ 2
(

2n

k

)
,

because an incidence vector with k changes in value can be described by giving
the k “change positions” and specifying if the first bit is a 0 or a 1.

For S ∈ Ss,k, equation (1) shows that eḠ(S, S̄) ≥ k/2, so, in order to have
e(S, S̄) ≤ δs, it is necessary that eḠ(S, S̄) ≤ δs and eR\Ḡ(S, S̄) ≤ δs− k/2. This
implies that eR(S, S̄) ≤ 2δs − k/2, which is impossible when k > 4δs. Thus,

∑

S : |S|=s

E [ZS ] ≤
4δs∑

k=1

∑

S∈Ss,k

Pr
[
eR(S, S̄) ≤ 2δs

]

≤
4δs∑

k=1

2
(

2n

k

)
Pr

[
eR(S, S̄) ≤ 2δs

]

≤ (8δs)
(

2n

4δs

)
Pr

[
eR(S, S̄) ≤ 2δs

]

≤ n
( ne

2δs

)4δs

Pr
[
eR(S, S̄) ≤ 2δs

]
, for δ ≤ 1/8.

Finishing the calculation requires an upper-bound on Pr
[
eR(S, S̄) ≤ 2δs

]
, for

which it is necessary to consider separately the large and small sets S.
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Large sets expand: When s = |S| ≥ γn, E[eR(S, S̄)] ≥ s
(
1 − s

n

)
and Cher-

noff’s bound (see, for example, [32]) gives

Pr
[
eR(S, S̄) ≤ 2δs

]
≤ exp

{
−s

(
1 − s

n

)(
1 − 2δ

1 − s/n

)2/
2

}
.

So, for γn ≤ s ≤ 3
4n,

∑

S:|S|=s

E[ZS] ≤ n

[(
e

2δγ

)4δ

exp
{
− (1 − 8δ)2

8

}]s

.

For any constant γ, if δ is a sufficiently small constant then this upper-bound
is exponentially small in n.

Small sets expand: When s = |S| ≤ γn, a tighter bound on the probability
can be obtained directly by

Pr
[
eR(S, S̄) ≤ 2δs

]
≤
(

s

2δs

)( s

n

)s−2δs

≤
[( e

2δ

)2δ ( s

n

)1−2δ
]s

.

So

∑

S:|S|=s

E[ZS ] ≤ n

[( ne

2δs

)4δ ( e

2δ

)2δ ( s

n

)1−2δ
]s

= n

[( e

2δ

)6δ ( s

n

)1−6δ
]s

.

For 3
1−6δ ≤ s ≤ γn and δ sufficiently small, this upper-bound is o(1/n).

Tiny sets expand: For δ ≤ 1
12 , the tiny sets S, of size s ≤ 3

1−6δ , will satisfy
e(S, S̄) ≥ δs because the base graph Ḡ is connected and so e(S, S̄) ≥ 1 ≥ δ 3

1−6δ .
Putting this all together shows that there exists δ > 0 such that

Pr
[
exists S : |S| ≤ 3

4
n and e(S, S̄) ≤ δ|S|

]
≤

3
4 n∑

s=1

∑

S:|S|=s

E[ZS ] = o(1).

�

3 Gentler Perturbation Does Not Necessarily Yield
Expander

Adding a 1-out to a graph increases the average degree of a vertex by 2. This is
not much, but it is not nothing. This section investigates the effects of perturb-
ing Ḡ by adding a random instance of Gn,ε/n (which is the Erdős-Rényi graph
where every candidate edge is included independently with probability ε/n). The
intention of the parameterization ε/n is to indicate that ε should be thought of
as a small constant, although the results of this section apply to any constant ε.
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An attempt to show that if R ∼ Gn,ε/n then the perturbed graph G = Ḡ + R
is an expander can begin by following in the footsteps of the proof of Theorem
1. And such a proof attempt will succeed in showing that whp the large sets in
G expand.

Theorem 2. For any ε > 0, for any sufficiently small δ > 0, for any n-vertex
connected graph Ḡ, and for R ∼ Gn,ε/n, the perturbed graph G = Ḡ + R has the
following property whp: for all S ⊆ V with e−ε/(64δ)n ≤ |S| ≤ 3

4n, at least δ|S|
edges go between S and S̄.

Proof. Follow the proof of Theorem 1. The only new calculation this proof re-
quires is a fresh application of Chernoff’s bound. For this perturbation,
E[eR(S, S̄)] = εs

(
1 − s

n

)
, and so

Pr[eR(S, S̄) ≤ δs] ≤ exp

{
−εs

(
1 − s

n

)(
1 − δ

ε(1 − s/n)

)2/
2

}
.

�

However, following the proof of Theorem 1 does not succeed in showing that small
sets expand. And indeed, it should not show this, because it is not necessarily
true. If Ḡ has a bad partition (defined below) then whp G is not an expander.

Definition 3. Ḡ has a δ-bad partition iff V (Ḡ) can be partitioned into sets
S1, . . . , Sk, S̄ for which the following inequalities hold:

|Si| ≤
1
2
ε−1 ln n, for i = 1, . . . , k;

eḠ(Si, S̄i) < δ|Si|, for i = 1, . . . , k;

k = ω(n1/2).

Theorem 4. For any ε > 0, any Ḡ, and R ∼ Gn,ε/n, if Ḡ has a δ-bad partition,
then whp there exists i ∈ {1, . . . , k} such that eR(Si, S̄i) = 0, and hence G =
Ḡ + R has e(Si, S̄i) < δ|Si|.

The proof is a direct application of the Second Moment Method (as described
in [31]) and omitted due to lack of space.

This theorem applies to show that, for example, when Ḡ is the d-dimensional
grid graph, the perturbed graph is not an expander whp.

Corollary 5. Let Ḡ be a d-dimensional grid on N = nd vertices and let R ∼
GN,ε/N for any ε with 0 < ε < 1. Then, for any δ > 0, whp the graph G = Ḡ+R

has some S ⊆ V with |S| = 1
2ε−1 ln N and e(S, S̄) < δ|S|.

Proof. Partition V (Ḡ) into subcubes each containing ln N vertices. Each sub-
cube Si has sides of length (ln N)1/d, and, for any constant δ and N sufficiently
large, eḠ(Si, S̄i) = O

(
(ln N)(d−1)/d

)
< δ ln N . �

On the other hand, if Ḡ is a graph such that all small partitions satisfying the
expansion condition, then Theorem 2 is sufficient to show that G is an expander
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whp. For example, if Ḡ consists of 2 expander graphs, each on n/2 disjoint
vertices, that are joined by a single edge, then G will be an expander whp.

The proof of Theorem 4 goes through without modification to show that the
model studied by Watts and Strogatz (SW1 with Ḡ a k-connected cycle) is not
an expander for any δ if k is any constant. On the other hand, when k � ln n
(as in the original Watts-Strogatz specification), whp every vertex has at least
1 edge randomly rewired, so it follows from Theorem 1 that the resulting graph
is an expander whp.

4 Conditions for Expansion in Kleinberg’s Small-World
Graph

In SW2, when r = 0 and q = 1, this is exactly the case treated in Theorem 1.
Making q larger only increases the number of edges across any cut, so any con-
nected base graph leads to an expander when r = 0.

For r > 0, the proof of expansion can proceed as in the proof of Theorem 1,
provided that there is a upper-bound on Pr[ev,i ∈ S] with any constants C > 0
and ε > 0 of the form:

for any v ∈ V and S ⊆ V with |S| = s, Pr[ev,i ∈ S] ≤ C
( s

n

)ε

.

When the metric is the �1 norm on the lattice [n]d, such a bound exists for
any r < d:

Theorem 6. Let V = [n]d, and let d(u, v) =
∑d

i=1 |ui − vi|. Then, for any r
with 0 ≤ r < d, and for any v ∈ V and S ⊆ V with |S| = s, Pr[ev,i ∈ S] ≤
C
(

s
n

)d−r−1
.

The proof is a direct calculation and is omitted due to lack of space.
The upper-bound on r given in this bound is tight, and when r = d, the

resulting graph is not an expander.

Theorem 7. For Ḡ an n × n grid, d(·, ·) = d1(·, ·), and r ≥ 2, Kleinberg’s
small-world graph is not rapidly mixing whp.

Proof. To verify the theorem, consider the set S = {(x, y) : x + y ≤ k}, where
k = n/ lnn, and calculate an upper-bound on the expected number of random
edges between S and S̄. This calculation can be simplified by considering sets
S� = {(x, y) ∈ V (Ḡ) : x + y = �}. For any i and j with i ≤ k ≤ j,

∑

v∈Si

∑

w∈Sj

d1(v, w)−2 ≤ |Si|

⎛

⎝(j − i)
1

(j − i)2
+ 2

|Sj|−(j−i)∑

�=1

1
(j − i + 2�)2

⎞

⎠

= i

(
1

j − i
+ 2

i∑

�=1

1
(j − i + 2�)2

)

≤ 2i

(
1

j − i

)
.
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Also, for any v ∈ V (Ḡ),
∑

w �=v

d1(v, w)−2 = Θ(ln n).

Thus, an upper-bound on the expected number of random edges between S and
S̄ is given by the following

E[eR(S, S̄)] ≤
k∑

i=1

n∑

j=k+1

∑

v∈Si

∑

w∈Sj

q

(
d1(v, w)−2

∑
u�=v d1(v, u)−2

+
d1(w, v)−2

∑
u�=w d1(w, u)−2

)

≤ (2q)Θ
(
(ln n)−1

) k∑

i=1

n∑

j=k+1

2i

(
1

j − i

)

≤ (4qk)Θ
(
(ln n)−1

) k∑

i=1

(Hn − Hi)

= (4qk)Θ
(
(ln n)−1

)
(k + k(Hn − Hk))

= Θ

(
k2 ln lnn

ln n

)
.

Since eḠ(S, S̄) = O(k), Markov’s inequality shows that for any constant δ
with δ > 0, whp e(S, S̄) ≤ δ|S|. �

5 Conclusion

It is necessary to conclude that the expansion of a randomly perturbed graph
depends on the base graph and the perturbation, and even seemingly similar
perturbations can produce vastly different results. Although adding a random
1-out makes any connected graph an expander whp, such a simple statement
is impossible for the gentler perturbation of adding a random Gn,ε/n. This is
not a bad thing, however, as empirical observations show that among complex
networks in the real world, some are expanders and others are not.

In the case of the small-world models of Watts and Strogatz and of Kleinberg,
the difference in the distributions is quite subtle. Generally Kleinberg’s model is
viewed as a strict generalization of Watts and Strogatz’s, but in the context of
expansion, the models are actually just different.

It is a pleasant surprise that Kleinberg’s model stops being an expander ex-
actly at the point where it becomes possible to find short paths with a decentral-
ized algorithm. Perhaps the expansion threshold and existence of decentralized
algorithms are fundamentally related in some way. But more likely not.
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18. Füredi, Z., Komlós, J.: The eigenvalues of random symmetric matrices. Combina-
torica 1(3), 233–241 (1981)
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Abstract. The estimated number of static web pages in Oct 2005 was
over 20.3 billion, which was determined by multiplying the average num-
ber of pages per web server based on the results of three previous studies,
200 pages, by the estimated number of web servers on the Internet, 101.4
million. However, based on the analysis of 8.5 billion web pages that we
crawled by Oct. 2005, we estimate the total number of web pages to be
53.7 billion. This is because the number of dynamic web pages has in-
creased rapidly in recent years. We also analyzed the web structure using
3 billion of the 8.5 billion web pages that we have crawled. Our results
indicate that the size of the ”CORE,” the central component of the bow
tie structure, has increased in recent years, especially in the Chinese and
Japanese web.

1 Introduction

As of Oct. 2005, the number of static web pages was estimated at over 20.3
billion. This number was calculated by multiplying the estimated average number
of web pages per web server, 200[1][2][3], by the number of web servers in Oct.
2005, 101,435,253[4]. However, based on our crawling status by Oct. 2005[5],
we estimate the number of web pages, including both static and dynamic web
pages, in Oct. 2005 to be about 53.7 billion. This discrepancy may be due to the
increase in number of dynamic web pages generated by CGI, etc.

In 1999, Broder et al. analyzed the graph structure of the web, called the web
structure, from the set of web pages crawled in that year[6]. In this previous re-
port, about 90% of web pages belonged to connected components, and about 28%
of web pages belonged to SCC (=strongly connected components)[6]. Inspired
by Broder’s web structure, several researchers investigated the web structure
based on their crawling web data. For example, in 2003, Lie et al. analyzed the
structure based on the set of web pages crawled from China. They reported that
the percentage of SCC was much larger than that in Broder’s web structure[8].
However, there have been no analyses of the web structure based on recent web
pages from all over the world. Here, we report the web structure computed from
3 billion web pages crawled between Jan. 2004 and Oct. 2005.

The remainder of this paper is organized as follows. In section 2, we describe
the e-Society Project[5] funded by the Japanese government. We analyzed the
� Currently working at Mitsubishi Electric Corporation.

W. Aiello et al. (Eds.): WAW 2006, LNCS 4936, pp. 36–46, 2008.
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web structure based on the data of web pages crawled by the e-Society Project.
In section 3, we report the estimated number of web pages. In section 4, we show
examples of related work with respect to analysis of the web structure. In section
5, we report the results of analysis of the web structure based on our crawled
web pages. Section 6 presents a summary of our work.

2 The e-Society Project[5]

The e-Society project “Technologies for the Knowledge Discovery from the In-
ternet” is one of the projects of the Ministry of Education, Culture, Sports,
Science, and Technology, Japan. The project contractor is Waseda University.
The project aims (1) to gather all web pages in the world efficiently and (2) to
discover some type of knowledge by applying data mining techniques. To achieve
these goals, we are now gathering web pages from all over the world. As described
in section 1, we used the data of pages crawled as part of this project to analyze
the web structure in 2005.

2.1 Crawling Status

We began gathering web pages in Jan. 2004 with 30 CPUs in 3 different locations
in Japan. We added 20 CPUs in Jan. 2005 and another 30 CPUs in Oct. 2005.
Currently, our crawling system has the capability to gather up to 35 million web
pages per day. By Oct. 2006, we had gathered over 14 billion web pages from all
over the world.

3 How Many Web Pages Are There?

As the most basic analysis, we estimated the number of web pages on the web.
Conventional research indicates that each web host has an average of about 200
web pages[1][2][3]. Netcraft, a company from the UK, investigates the number of
web servers on the whole web and publishes their results every month on their
home page. According to the Netcraft report of Nov. 2005[4], the number of web
servers was estimated as 101,435,253. By multiplying these two numbers -i.e.,
200×101, 435, 253- we can estimate the total number of web pages as about 20.3
billion.

However, by Oct. 2005, we had gathered 8,507,237,370 web pages from 16,035,
801 web servers, indicating that the average number of web pages per host is
about 8, 507, 237, 370/16, 035, 801 � 530. Multiplying this figure by the number
of web servers reported by Netcraft yields an estimate of the total number of
web pages all over the world of about 53.7 billion. This discrepancy may be due
to the recent rapid increase in number of dynamic web pages, such as CGI pages
based on databases, Blogs, Portal Sites, and EC sites.

Note that this analysis differs from estimating the number of web pages in-
dexed by search engines. Bharat et al.[9], Henzinger et al.[10] Vaughan et al.[11]
and Bar-Yossef et al.[12] investigated the relative size of several search engines’
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indexes in 1997, 1998, 2004 and 2006, respectively. These works focus on the rel-
ative size of indexed web pages by different search engines. On the other hand,
our analysis estimates the size of actual web, regardless of whether each web
page is indexed or not.

4 Related Works

In this section, we present related work with respect to web structure[6].

4.1 Applying Graph Theory to Web Link Structure

The web has a hyperlinked structure, which was first introduced by Broder et al.
[6]. When we consider pages as vertexes and hyperlinks as edges, then it is
possible to regard the web link structure as a directed graph. Broder et al. focused
on this property, and analyzed the web link structure from the viewpoint of
graph theory[6]. Inspired by their approach, several researchers analyzed the web
structure based on their own web data. The remainder of this section describes
these conventional studies.

4.2 Graph Structure in the Web[6]

Broder et al. analyzed the whole web structure in 1999 based on 200 million web
pages with 1,500 million hyperlinks[6]. They reported that about 90% of web
pages belong to connected components and the structure is similar in shape to
a bow tie, as shown in Fig. 1.

Broder et al. defined four types of component in the web structure, IN, CORE,
OUT, and TENDRILS[6]:

– CORE is defined as SCC(=Strongly Connected Component).
– IN is defined as the set of web pages that have paths to SCC but do not

have paths from SCC.
– OUT is defined as the set of web pages that have paths from SCC but do

not have paths to SCC.
– TENDRIL is defined as the set of web pages that do not have paths either

to or from SCC.

As shown in Table 1, the web structure in 1999 consisted of 28% SCC and 21%
IN, OUT, and TENDRILS.

4.3 Structural Properties of the African Web[7]

Boldi et al. analyzed the African web structure in 2002. The dataset consisted
of 2 million web pages gathered from 2,500 African hosts. They reported that
the African web differed in shape from the bow tie structure of the web as a
whole. As shown in Fig. 2, the African web structure contained multiple OUT
components, but had no IN components. However, the dataset of the African
web structure was small compared to those of other web structures, and this
may have been responsible for the difference in shape.
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Fig. 1. Bow-tie Structure of the Web in 1999[6]

Fig. 2. African Web Structure in 2002[7]

4.4 China Web Graph Measurements and Evolution[8]

Lie et al. analyzed the Chinese web structure in 2003 based on 140 million
web pages with 4,300 million hyperlinks[8]. They reported that the Chinese web
structure was bow tie-shaped, as shown in Fig. 3. However, as shown in Table 1,
the percentage of CORE in the Chinese web structure in 2003 was much larger
than that of in Broder’s whole web structure in 1999. The authors concluded that
the large percentage of CORE in the Chinese web structure was a phenomenon
specific to the Chinese web.

5 Web Structure in 2005

As we described in section 4, conventional studies have revealed different prop-
erties of the web structure. Broder’s web structure was based on the web data in
1999. Boldi’s African web structure and Lie’s Chinese web structure were based
on parts of the whole web. To determine the current shape of the web structure,
an updated web structure is needed. We analyzed the structure based on data
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Fig. 3. Chinese Web Structure in 2003[8]

Table 1. The percentages of components of bow-tie structures[6][8]

WebGraph CORE(SCC) IN OUT TENDRILS DISCONNECTED

Web in 1999[6] 56 million 43 million 43 million 44 million 17 million
(28%) (21%) (21%) (21%) (8%)

Chinese Web
in 2003[8]

112 million 16.5 million 9 million 1 million 1 million

(80%) (12%) (6%) (0.7%) (0.7%)

consisting of web pages gathered as part of the e-Society project. In this section,
we report the results for the current web structure.

We analyzed the whole web structure, web structures by TLD (=Top Level
Domain), and web structures by language based on 3,207,736,427 web pages1

gathered between Jan. 2004 and Jul. 2005. These web pages were gathered from
all over the world and their languages were detected automatically using the
Basis Technology Rosette Language Identifier[13].

The reminder of this section is as follows. In section 5.1, we introduce our
analytical strategy for computation, i.e., host level reduction. In section 5.2,
we describe the properties of our dataset. Then, we report the results of the
whole web structure, web structures by TLD, and web structures by language
in sections 5.3, 5.4, and 5.5, respectively.

5.1 Host Level Reduction

Our analysis was based on host level analysis as described below:

– Pages in the same host are considered as one vertex.
– Hyperlinks to other hosts are considered as edges.

1 Our crawler gathers web pages from the top page of each host, and follows links up
to 15 stratums.
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Fig. 4. Raw Link Data

Fig. 5. Preprocessed Link Data

To analyze the host level web structure, we applied the following preprocessing
steps to a raw link dataset before computing the web structure.

1. Extract hosts from a raw link dataset to generate a host list.
2. Group web pages in the same host.
3. Extract links that connect two different hosts, called inter-host links, from

the raw link dataset.

We call these preprocessing steps “host level reduction.” For example, when we
have a raw link dataset as shown in Fig. 4, preprocessed data will be as shown
in Fig. 5.

5.2 Dataset Properties

We used the data of web pages crawled as part of the e-Society project. The TLD
distribution and language distribution of the dataset are shown in Fig. 6 and
Fig. 7, respectively. Similar to the actual web, our data collection consisted of a
large proportion of “.com” domains (Fig. 6) and web pages in English (Fig. 7).
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Table 2. Components of Whole Web Structure in 2005

CORE IN OUT Other

Number of hosts 624,173 147,794 621,788 119,770

Percentage of hosts 41% 10% S 41% 8%

Number of pages 2,102,971,321 633,530,035 346,251,616 124,983,455

Percentage of pages 65% 20% 11% 4%

Fig. 6. TLD Distribution of the Dataset

However, as we gathered web pages from “.jp” and “.com” domain lists, our
dataset was biased toward “.jp” and “.com” domains.

Our raw link dataset consisted of 3,208,139,905 web pages (vertexes) and
93,397,065,743 links (edges). After applying host level reduction preprocessing,
the preprocessed link data consisted of 1,719,134 hosts (vertexes) and 91,084,879
inter-host links (edges).

In this analysis, we have not discarded duplicated web pages in a host nor
among hosts. However, because of the host level reduction, which is described in
section 5.1, web pages in the same host are considered as a vertex. Due to this,
our result turns to be the same even if duplicated web pages in the same host are
aggregated. On the other hand, when duplicated web pages exist among hosts,
they are considered as multiple vertexes.

5.3 The Whole Web Structure in 2005

Fig. 8 and Table 2 show the results of the whole web structure in 2005. As shown
in Fig. 8 and Table 2, the percentage of the CORE component had become larger
than that in Broder’s whole web structure in 1999. Although Lie et al. concluded
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Table 3. Components of web structures by TLD in 2005

TLD CORE IN OUT Other

.com 53.65% 19.73% 22.25% 4.37%

.jp 26.46% 1.77% 71.32% 0.46%

.de 0.25% 0.05% 78.36% 21.34%

.edu 0.05% 0.00% 14.44% 85.51%

.fr 0.01% 0.02% 25.33% 74.63%

.it 0.11% 0.04% 0.04% 99.81%

.kr 0.00% 0.00% 1.09% 98.91%

.net 0.52% 0.17% 35.42% 63.89%

.org 0.61% 0.38% 64.25% 34.76%

.ru 0.77% 0.05% 0.49% 98.70%

that the increase in the CORE component percentage was a pattern specific to
the Chinese web, this phenomenon was found not only in the Chinese web, but
also in the whole web in the present study.

5.4 Web Structures by TLD

Table 3 shows the results of web structures by TLD. As shown in Table 3, there
were no large CORE components in web structures of all TLD, excluding the
.com and .jp domains. Even in the .jp domain web structure, the percentage
of CORE component was smaller than that in Broder’s whole web structure in
1999. These results indicate that the web cannot be divided with regard to TLD.

5.5 Web Structures by Language

Table 4 shows the results of web structure by language. As shown in Table 4,
Chinese and Japanese language web structures have large percentages of CORE

Fig. 7. Language Distribution of the Dataset
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Table 4. Components of web structures by Language in 2005

TLD CORE IN OUT Other

Chinese 76.88% 9.98% 10.57% 2.57%

Japanese 71.05% 25.85% 2.54% 0.56%

English 66.90% 9.04% 16.44% 7.62%

Spanish 64.93% 5.30% 23.60% 6.16%

French 61.85% 9.23% 20.65% 8.27%

Arabic 61.43% 10.20% 18.59% 9.78%

Korea 54.32% 17.07% 19.36% 9.25%

Russian 35.76% 18.20% 18.35% 27.69%

Portuguese 26.60% 4.94% 42.18% 26.28%

German 26.61% 8.16% 42.18% 23.05%

Italian 23.67% 17.10% 29.54% 29.69%

Other 7.24% 1.98% 9.32% 81.47%

Fig. 8. Web structure in 2005

components. On the other hand, German and Italian languageweb structures have
small percentages of CORE components. This may be because our web data col-
lection had low coverage in the case of German and Italian language web pages.
Note that in the case of the Chinese language web structure, the percentages of
components were similar to those in Lie’s Chinese web graph in 2003.

6 Conclusion

In this paper, we reported the properties of the web structure in 2005 based
on 3.2 billion web pages crawled as part of the e-Society project. Compared
to Broder’s web structure in 1999, the percentage of the CORE component
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increased from 28% to 65%. Lie et al. concluded that the large percentage of
CORE component is a phenomenon specific to the Chinese web structure. How-
ever, our analysis showed that the increase in CORE component has occurred
in the whole web.

We also analyzed web structures by TLD and by language. By comparing the
two types of web structure, we confirmed that the web cannot be divided by
TLD, but can be divided by written language.

6.1 Future Work

Since our analysis is based on the crawled web pages which have been crawled
by our original crawler following hyper-links from seed URLs, our dataset might
loss some web pages which should be categorized as IN component. Then this
might result in the decreased percentage of IN component to some extent. To
solve this, one can use indexes of search engines, and internet archive, such as
WebBase[14][15] to add the fraction of IN component to the dataset. As a future
work, we update the web structure with solving such a IN component problem.
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Abstract. We study a geometric random tree model Tα,n which is a
variant of the FKP model proposed in [1]. We choose vertices v1, . . . , vn

in some convex body uniformly and fix a point o. We then build our
tree inductively, where at time t we add an edge from vt to the vertex
in v1, . . . , vt−1 which minimizes α ‖vt − vi‖ + ‖vi − o‖ for i < t, where
α > 0. We categorize an edge vi → vj in this graph as local or global
depending on the edge length relative to the distance from vi to o. It is
shown that for α bounded away from 1 either all edges are local or all
are global a.a.s. However, as α → 1 we show that in fact the number of
local and global edges are asymptotically balanced.

1 Introduction

Consider the problem of providing telephone service to some central hub. Each
customer has some given position in the plane, and thus a distance from the
hub. If we are allowed to extend a single connection from each new customer
to an existing customer, then choosing the nearest neighbor clearly optimizes
the amount of new wire we have to string. On the other hand, connecting to an
existing customer who is farther away from the hub than our new customer may
lead to attenuated service, and hence we may wish to choose a customer who
is closer to the hub (in the Euclidean sense, say). If we weight these two costs
and choose a customer which optimizes our total cost function, the behavior will
clearly depend on the relative weighting given to each cost.

We shall construct a simple geometric tree model motivated by the above
example. We shall say that a customer is linked by a local edge (resp. global
edge) if the edge length is short (resp. long) relative to the distance between
the customer and the hub. In this way we obtain a meaningful description of
the local behavior which respects the length scale of each vertex. The above
example shows that, depending on how we choose to weight edge costs, both
completely local and completely global behavior are possible. In this paper, we
shall quantify these ideas, and in particular we shall look at the transition from
global to local behavior based on relative costs.

W. Aiello et al. (Eds.): WAW 2006, LNCS 4936, pp. 47–58, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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2 Related Work

Network models which encapsulate both local and global structure have been
investigated for some time. One of the earliest such papers is [2], in which the
authors analyze the union of an n-cycle and a random matching, showing that
it has both a linear number of edges and small diameter.

From an algorithmic perspective, Kleinberg in [3] proposed a simple local/
global network model consisting of an n×n planar grid, to which one adds a single
random edge at each vertex. The edge is chosen with probability proportional to
some power of the inverse distance. He demonstrates that only for power 2 can
an algorithm find short paths given only local information; for other exponents
the random component is either too local or too random. In a similar vein, the
authors of [4] show that for an arbitrarily populated grid model in which link
probabilities are determined via local density (sparse regions have higher link
probability than dense regions), computable short paths exist. The authors of [5]
replace the local grid with a graph that satisfies prescribed local flow constraints,
and the global graph with a power-law G(w) random graph (see [6]). In this way
they obtain both local clustering and small diameter, and they further provide
an algorithm for separating the local and global components.

The model we present here is a variant of that originally proposed in [1] (the
FKP model). In their model, a random tree is formed in the unit square, where
each new vertex vt is attached to the prior vertex vi that minimizes α ‖vi − vt‖+
d(vt, 0), where here ‖·‖ denotes the Euclidean distance and d(·, 0) the graph
theoretic distance to the root. This model is an example of the Heuristically
Optimized Tradeoff paradigm, popularized in [7], characterized by optimization
of a random hazard. They show that for α = o(

√
n) the graph is essentially star-

like while for α = ω(
√

n) the graph behaves as a random recursive tree. While
this model was originally investigated with respect to power-law behavior, it was
shown in [8] that in these regimes a power law can only exists in a vanishingly
small fraction of the tail, but both [1] and [8] leave unanalyzed the case of
α = Θ(

√
n).

Finally, geometric random graph models as such have been studied for over
a decade, the most studied being the disc model in which two points of some
random point process are linked if they are of distance less than r (see [9]).
Random linkages in point processes have existed in the infinitary setting for
much longer in the percolation literature [10]. The use of more delicate models
in complex network modeling is more recent. The authors of [11] consider n
random points on the sphere, where each vertex connects to a fixed number k
vertices in a neighborhood of radius r about the vertex. Their model generates
a power-law degree distribution and can be shown to have small separators.

3 Definitions and Model

We define a random graph model Tα (Tα,n when we wish to stress the dependence
on n) with positive parameter α. We denote by K some compact, convex set in
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vix

y
o

Fig. 1. The shaded region represents H(vi, 1/4) where K is a sphere. Note that x and
y are 1/4 local and global, respectively.

Rd and o a fixed point in K. Without loss of generality, we assume the volume
of K to be one.

For a given natural number n, we construct Tα,n as follows: The vertices of
Tα,n, denoted by Vn = {v1, . . . , vn}, are chosen independently and uniformly in
K.1 For each vertex vi, i = 1, . . . , n, associate to it a function

φi(x) = α ‖vi − x‖ + ‖x − o‖ , (1)

where here ‖·‖ is the Euclidean length. For the model Tα,n, we associate to each
vertex vi, i = 1, . . . , n, a unique edge ei with source vi and target vti given by

vti := argminj<iφi(vj).

We shall assume in the sequel that such a minimizer is unique, as this happens
with probability one. One may also define an offline version in which all vertices
are revealed at once and the selection rule argminj �=iφi(vj) is used to determine
the target of edge ei. Unlike Tα, however, this later model is not in general a
tree.

Finally, for an edge ei with target vj , we call ei β−local (or (1 − β)-global)
for 0 ≤ β ≤ 1 if the Euclidean edge length of the orthogonal projection of vivj

onto the segment ovi is at most β ‖vi − o‖. Equivalently, the target of the edge
is contained in the halfspace

H(vi, β) :=
{
x | (x − o) · (vi − o) ≥ (1 − β) ‖vi − o‖2

}
.

If not otherwise stated we take β = 1
2 . See Fig. 1. We shall concern ourselves

with the fraction ρ(β) of β-local edges in T .

1 As is usual in the theory of random graphs, we shall adopt the point of view that Tα,n

and Tα,m are constructed on the same probability space such that Vn ∩ Vm = Vn

if n ≤ m. As the vertices completely determine the graph, the subgraph of Tα,m

induced by Vn is thus Tα,n, and hence we view T as being built one vertex and edge
at a time.



50 R.M. Richardson

Finally, all asymptotic results hold under the assumption n → ∞, and we
use the Landau notation O(·), o(·), Ω(·) etc. with respect to this assumption. We
denote by P,E,Var,Cov, the probability, expectation, variance, and covariance,
respectively. We say a properties holds asymptotically almost surely (a.a.s) if the
probability of non-occurrence tends to 0 as n → ∞. The ε-ball about a point
p ∈ R

d is denoted by B(p, ε).

4 Results

Our first result demonstrates that there is a sharp phase transition around the
value α = 1.

Theorem 1 (Degree Distribution). Let K be a compact, convex set in Rd,
and o some fixed point in the interior of K. We then have the following for Tα,n:

1. If α > δ > 1 for δ fixed, then there exists a constant c such that for any
vertex vi, i = 1, . . . , n, we have

P[deg(vi) ≥ D] = O(n exp(−cD)). (2)

In particular, the maximum degree is O(ln n) a.a.s.
2. If α < δ < 1 for δ fixed, then a.a.s. the number of degree one vertices is

n(1 + o(1)), and some vertex has degree at least ω(n/ lnn).

Remark 1. Under the assumption that α → ∞ sufficiently fast (ω(ln n) say),
one can show a matching exponential lower bound in (2), which follows by a
modification of an argument found in [8].

The FKP model in [1] was also shown to have both star-like and exponential-
tailed degree distributions based on the parameter α. However, the authors of [1]
also asserted a third range of behavior ranging from the regime where α was con-
stant to O(

√
n) in which the degree distribution had a power-law tail. Though con-

sistent with the work of [1], it was subsequently shown in [8] that up to
O(

√
n/(ln n)4) this power law held only over a vanishingly small portion of the

tail, and indeed the actual behavior was similar to that of part 2 of Thm. 1.

Despite the change in degree distribution, the diameter is well behaved for all
parameter ranges. We have

Theorem 2 (Diameter). For any α > 0, the diameter of T is Θ(ln n) a.a.s..

Our main goal is to understand the relative number of local edges in our graph.
For the case of α bounded away from 1 we can quantify edge lengths in absolute
terms.

Theorem 3 (Edge Length). We assume that K ∈ R
d.

1. If α > δ > 1 for δ fixed, then there exists some constant c such that the length
of ei is at most c( ln n

n )1/d for every i = 1, . . . , n, with probability tending to
one. Moreover, the number of edges which exceed (ω(n)

n )1/d is o(n) for any
ω → ∞.
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2. If α < δ < 1 for δ fixed, then all edges have one endpoint within (ω(n)
n )1/d

of o a.a.s., where ω(n) → ∞ as slowly as desired.

In particular, this gives us information on the ratio of β-local edges.

Corollary 1. For K and o as in Thm. 3, if α > δ > 1 for δ fixed, then ρ(β) → 1
almost surely. If α < δ < 1 for δ fixed, then ρ(β) → 0 almost surely.

Remark 2. In particular, we find that when α is bounded away from one the
distribution of edge lengths is governed primarily by the geometry of the extreme
cases, α = 0 and α → ∞. Hence, as ρ(β) is a rough measure of the local tendency
of the graph, we see that the graph is entirely local or global in this case.

On the other hand, we shall see that as α → 1, ρ(β) changes. If we allow β to
vary with n, then we can track this relationship. A rough calculation shows:

Theorem 4. Let α > 1. Then if we set

β = ω
(
(α − 1)−

d−1
d n−1/d

)
,

we find 1 − ρ(β) = o(1) a.a.s..

The above is far from best possible, as we shall see from the next result, but it
already yields information on the range of α for which one can find completely
local behavior. A precise description of the tradeoff between α and β will appear
in a forthcoming work.

Our main theorem asserts that around α = 1, our model Tα consists of both
local and global edges of the same magnitude, as measured by our parameter
ρ(β). We work in the unit volume ball in R2, for simplicity.

Theorem 5 (α = 1). Set K = B(0, π−1/2) ⊆ R2 with o = 0. If α = 1, we have

ρ

(
1
2

)
=

1
2

+ o(1),

with probability tending to one. Additionally, if β is fixed and α = 1 + o(n−2)
then there exists constants 0 < c < c′ < 1 depending on β such

c < E[ρ(β)] < c′.

Remark 3. The proof of Thm. 5 gives the following heuristic explanation for this
behavior: for a point vi in K with ‖vi − o‖ = l, the edge ei has length uniformly
chosen in [0, l] and is contained in the thin tube about ovi. It is thus tempting
to conjecture that ρ(x) ≈ x, but the proof of Thm. 5 does not seem to generalize
to this case.
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Fig. 2. α = 3 Fig. 3. α = 0.5 Fig. 4. α = 1

Fig. 5. Tα,10,000 instances

5 Further Directions

– Though [8] shows that no reasonable power law for the FKP model exists for
most ranges of α, both [8] and [1] leave substantially unexamined the cases
around the phase transition,

√
n/(ln n)4 � α �

√
n ln n. However, this is

the range in which the α-scaled shortest distance and the graph theoretic
distance are of the same order. In the model Tα, the summands in φi are of
the same order at the phase transition (α ≈ 1) as well. While the unknown
constants in the FKP model make it impossible to compute examples in this
range, it is easy to simulate T1. In such simulations we find, in examples
scaling up to 10, 000 vertices, that a power law holds for the entire degree
sequence, in both the T and related offline model. We thus conjecture that
both the T and FKP models actually have power-law degree distributions
at the phase transitions, and Thm. 5 suggests the range of stability of this
behavior for T (namely α = 1 + o(n−2)) for d = 2. Further, the power law
exponents appear to be decreasing functions of the dimension.

– In both T and the FKP model, the weight α is a fixed function of n. A.
Flaxman (personal communication) suggests looking at a non-homogeneous
variant of these models. To wit, for the T model he suggests setting

φi(x) = α(i) ‖vi − x‖ + ‖x − o‖ ,

where here α(i) varies with i.
– Much more is left to be said about ρ(β) for α ≈ 1. The proof of Thm.

5 presents sufficient dependence between edges such that standard sharp
concentration results do not apply. Obtaining a sharper convergence result
in Thm. 5, for example, will most likely require new tools.

– The results of Thm. 1 and Thm. 5 are similar to an infinite Pólya urn model
studied in [12]. In this model, at each time step a ball is added to an existing
urn with probability 1−p , else a new urn is created. If a ball is to be placed
into an existing urn, then each urn is chosen with probability proportional
to mγ , where m is the number of balls in the urn. Under the regimes γ > 1,
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γ < 1, and γ = 1 the bin distributions are exponential, dominated by a
single bin, and power law a.a.s. Given that φi uses no explicit information
about vertex degrees, it it currently unclear to what extent the degree of a
vertex vi correlates with ‖vi − o‖.

6 Proofs

For the sequel we focus on a proof of our main theorem, Thm. 5, in the offline
version of our model, as well as the pertinent geometry underlying all of the
results. An expanded treatment of the remaining results and the related offline
model will appear in a forthcoming paper.

6.1 Regions of Influence

All of the subsequent analysis in this paper relies on the notion of influence
regions. Set γ > 0. Then the set of points

U(p, γ) = {q | ‖o − q‖ + α ‖q − p‖ ≤ (min(1, α) + γ) ‖p − o‖}

forms the γ-influence region (or γ−region) about p. We then have:

Lemma 1 (Convexity). The region U(p, γ) is convex for any choice of p and
γ > 0.

Proof. Let x1,x2 ∈ K be such that

‖xi − o‖ + α ‖xi − p‖ = (min(1, α) + γ) ‖p − o‖ , i = 1, 2, (3)

which is to say that they lie on the boundary of U(p, γ). Let z = λx1 +(1−λ)x2.
Then

‖z − p‖ = ‖λx1 + (1 − λ)x2 − p‖ ≤ λ ‖x1 − p‖ + (1 − λ) ‖x2 − p‖ ,

and similarly for ‖z− o‖. Thus,

‖z − o‖ + α ‖z − p‖ ≤ (λ ‖x1 − o‖ + (1 − λ) ‖x2 − o‖)
+ α(λ ‖x1 − p‖ + (1 − λ) ‖x2 − p‖)

(by (3)) = (min(1, α) + γ) ‖p − o‖ .

��
For the special case α = 1, the γ-region is simply an ellipse with foci o and p
and with major axis length r(1 + γ)/2.

For α < 1, as γ → ∞ the γ region approaches that of an ellipse with foci o
and p. However, for γ sufficiently small, the γ-region localizes about the point o.
Specifically, the γ-region forms a convex region about o, the boundary of which
is at maximum and minimum distance from o along the line through o and p.
The case α > 1 is similar, but in this case the γ-region concentrates about p.
See Fig. 6.

We can further elucidate the structure of this region by computing the radii
of the smallest enclosing circle and the largest inscribing circle of U(p, γ). We
summarize this as follows:
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o p α > 1

α < 1o p

α = 1o p

Fig. 6. γ−regions for γ small

Lemma 2. Fix d. Let p be a point of distance r to o, and assume α �= 1. Then
for γ sufficiently small

Vol(B(0, 1))
(1 + α)d

≤ Area(U(p, γ))
(rγ)d

≤ Vol(B(0, 1))
|α − 1|d , (4)

where Vol(B(0, 1)) = πd/2

Γ (d/2)+1 denotes the volume of the unit ball in Rd.

Proof. For α > 1, consider the ball centered at p of minimum radius xr, x ≤ 1
that includes U(p, γ). As U(p, γ) and this ball intersect along the line po, we
obtain the equation (1−x)r+αxr = (1+γ)r, hence xr = γr/(1−α). The other
cases are similar. ��

Thus, when α �= 1, the γ-region for a point p concentrates strongly about p
when α > 1 (resp. o when α < 1). If some other point is in U(p, γ), then we are
assured that p links to a point in U(p, γ). Hence if α is bounded away from 1,
a comparison argument using Lem. 2 shows that the length of the edge from p
will be of the same order as the nearest neighbor distance (resp. distance to o).
These ideas can be quantified to prove Thms. 1, 3. However, if α → 1 observe
that right hand side of (4) becomes large, reflecting the fact that the γ region
becomes increasingly ellipsoidal. In this case, better estimates are necessary to
prove results such as Thm. 4.

6.2 Proof of Theorem 5

We focus here on the offline model, where we make no restriction that a vertex
vi must link to some prior vertex vj , j < i. We briefly discuss the modification
for Tα at the end of the proof. Our argument will be via a second moment
calculation, according to the following statement (see [13]):

Lemma 3. Let X = X1 + . . . + Xn where Xi is an indicator for the event Ai.
If Var[X ] = o(E[X ]2) then we have

X = E[X ](1 + o(1)), a.a.s.

Let Xi be the indicator that ei is a local edge, and X =
∑n

i=1 Xi then counts
the number of local edges. Denote by E(p, t) the closed ellipse with foci at p and
o and area t.
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We shall construct parameters t0, h0, r0, θ0 depending on n, but will delay
setting these for the moment. The parameter values are related by the following
geometric estimate, which we assume.

Lemma 4. Let vi and vj be vertices located at a radius greater than r from o.
Then the furthest point of of E(vi, t)∩E(vj , t) from o occurs at a radius at most
c1

t2

r5(1−cos θ
2 )

from o for some constant c1 > 0, under the assumption that t, r, θ

tend to zero.

Construct the following events:

– A(vi): E(vi, t0) ⊆ K,
– B(vi): |{v1, . . . , vn} ∩ (E(vi, t0) − B(o, h0) − B(vi, h0))| > 1 and ‖vi − o‖ >

r0.
– C(vi, vj): �viovj > θ0.

For convenience, we write D(vi, vj) = A(vi) ∩ A(vj) ∩ B(vi) ∩ B(vj) ∩ C(vi, vj).
The key to our proof is the following lemma. Note that if E denotes an event
then E denotes its compliment.

Lemma 5. There are choices of t0, h0, r0, θ0, depending upon n, such that h0 ≤
c

t20
r5
0(1−cos

θ0
2 )

as in Lem. 4,
∑n

i=1 P(A(vi) ∩ B(vi)) = o(n) and
∑

i�=j P(D(vi, vj))

= o(n2), where the latter sum ranges over all pairs (i, j), i �= j.

Proof (Thm. 5, β = 1/2.).

Step 1: Fix i. We construct a map T1 of the underlying probability space Kn.
On the set A(vi) ∩ B(vi) T1 acts as the identity. On A(vi) ∩ B(vi) T1 reflects
every point in E(vi, t0) except vi about the axis of E(vi, t0) perpendicular to
vio (generically the minor axis). The assumption A(vi) makes this operation
well defined. Further, T1 is probability preserving since rigid reflection preserves
Lebesgue measure.

Critically, T1 exchanges the events A(vi)∩B(vi)∩{Xi = 1} and A(vi)∩B(vi)∩
{Xi = 0} since E(vi, t0)−B(vi, h0)−B(o, h0) is symmetric about the boundary of
H(vi, 1/2). As a result, P({Xi = 1}∩A(vi)∩B(vi)) = P({Xi = 0}∩A(vi)∩B(vi),
and hence P(Xi = 1) = 1/2+O(P(A(vi) ∩ B(vi))). Summation and Lem. 5 give

E[X ] = n/2 + o(n). (5)

Step 2: Our proof of the second step is similar. Fix i, j, i �= j. We construct
maps T2 and T3 on our probability space Kn. On the event D(vi, vj) both act
as the identity. Otherwise, T2 maps any point except vi in E(vi, t0)−B(o, h0)−
B(vi, h0) to its reflection across the axis of E(vi, t0) perpendicular to ovi. Define
T3 analogously, but with respect to vj .

The key property now is that the regions E(vi, t0) − B(o, h0) − B(vi, h0)
and E(vj , t0) − B(o, h0) − B(vj , h0) are disjoint, by Lem. 4 and the choice of
parameters promised in Lem. 5. Hence T2 and T3 commute (and thus form an
Abelian group under composition), and so

D(vi, vj) ∩ {Xi = εi ∧ Xj = εj} , εi, εj ∈ {0, 1} ,
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are a single orbit of the action of this group. As T2 and T3 preserve probability,
the above events are equiprobable. Hence, E[XiXj ] = 1/4 + O(P(D(vi, vj))).
As E[Xi] = 1/2 + O(P(A(vi) ∩ B(vi))), we see that Cov(Xi, Xj) = E[XiXj ] −
E[Xi]E[Xj ] = O(P(D(vi, vj))). Thus, summation and Lem. 5 gives

Var(X) =
n∑

i=1

Var(Xi) +
∑

i�=j

Cov(Xi, Xj) = o(n2). (6)

Lem. 3, (5), and (6) then finish the proof. ��

We are then left with the task of verifying Lem. 5. The following necessary
geometric arguments we state with only a proof sketch for each.

Lemma 6. Let v be chosen uniformly in K. If t → 0, the probability that
E(v, t) �⊆ K is O(t2).

One verifies that the ellipse E(v, t) does not extend much farther than v, and so
in particular if v avoids the boundary by a slim margin, the result holds.

Lemma 7. Under the assumption t0, r0, h0 → 0 we have

P(B(vi)) = O(r2
0) + O((1 − t0 + O(t30))

n−1) + O((n − 1)h2
0).

B(vi) consists of the requirements that vi avoid B(o, r0), some point besides vi

is contained in E(vi, t0), and no points fall in B(o, h0)∪B(vi, h0), and the above
expression is simply the union bound of the relevant failure probabilities.

We are finally in a position to prove Lem. 5.

Proof (Lem. 5). By Lem. 6, P(A(vi)) = O(t20). By Lem. 7,

P(B(vi)) = O(r2
0) + O((1 − t0 + O(t30))

n−1) + O((n − 1)h2
0).

It is clear that P(C(vi, vj)) = θ0, since this is just the probability that a random
uniform angle in [0, 2π] is at most θ0. Note that there is a c2 > 0 such that

c1t
2
0

r5
0(1 − cos θ0

2 )
≤ c2t

2
0

r5
0θ

2
0

(7)

using the approximation cosx ≥ 1−x2/2+ O(x4) for x sufficiently small, under
the assumption θ0 → 0 and t20r

−5
0 → 0, say.

Setting t0 = 3 ln n
n , we see that the term O(t20) = O(n−2 ln2 n) and O((1 −

t0 + O(t30))
n−1) = O(n−2.99). We set h0 = c2

t20
r5
0θ2

0
as in (7), thus making h0 a

threshold as in Lem. 4. Taking θ0 = n−3/10 and r0 = n−3/20, yields the bound

P(D(vi, vj)) = O(n−3/10 ln2 n).

Since P(A(vi) ∩ B(vi)) ≤ P(D(vi, vj))), the sums claimed in the lemma follow.
��
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Remark 4. The proof for Tα requires a slightly more careful approach. In par-
ticular, one needs to account for the fact that the γ-region about vi in which
one expects to find another point becomes increasingly slender as i → n, while
at the same time the likelihood of finding a point near o increases. We can
partition the vertices v1, . . . , vn into epochs, where vertex i is in epoch �lg i�.
For each such set, the appropriate value of t0, r0, θ0 etc. will change. The chal-
lenge then becomes analyzing cross-terms E[XiXj] when i and j lie in different
sets, which requires slightly refined geometric estimates and significantly more
bookkeeping.

Proof (Remainder of proof of Thm. 5). With β fixed, we shall assume in what
follows that |α − 1| = o(γ) for a parameter γ → 0. Further, we assume that p is
a point such that ‖o − p‖ = r is bounded away from zero.

We consider the γ-region about p, and construct inscribed and circumscribed
figures about the γ-region. Let l1 be the intersection of the line through o and
p and the γ region. The length of l1 is thus (1 + o(1))r. Let l2 be the segment
perpendicular to l1 which intersects the midpoint of po. The length of l2 is
(1+o(1))r

√
γ. The convex hull of l1∪l2 forms a rhombus R1 contained entirely in

the γ-influence region with area (1+o(1))r2√γ. We can also form a circumscribed
rectangle R2 which is axis-parallel to the segments l1 and l2, and which has
asymptotically twice the area of the rhombus.

Now, let p be one of our randomly chosen points vi, and further assume it has
distance ‖vi − o‖ bounded away from 0 and 1/

√
π, which happens with positive

probability. Next, set γ = (nr)−2, which causes the rhombus and rectangle
to have areas (1 + o(1))n−1 and (1 + o(1))2n−1, respectively. Further, for n
sufficiently large the rhombus, ellipse, and rectangle all lie in K. Thus, the event
that one of {v1, . . . , vn} − {vi} falls in the rhombus and all others avoid the
rectangle is at least�

n

1

�
Area(R1)(1−Area(R2))

n−2 =

�
n

1

�
n−1(1+o(1))(1−2n−1(1+o(1)))n−2 > c1 > 0,

for some positive constant c1.
Now, for γ bounded above and hence the length of l2 bounded above, we see

that
Area(H(vi, β) ∩ R1)

Area(R1)
> c2 > 0.

Summarizing, the probability that there is exactly one point in the rhombus
apart from vi and that all other points fall outside the rectangle is bounded below
by some positive constant. Further, the probability that a point chosen uniformly
in the rhombus falls in H(vi, β) is bounded below by a positive constant. Thus,
the total probability that the target of vi is local is bounded below by a positive
constant, which shows that E[Xi] > c > 0 for some constant c, hence E[ρ(β)] >
c > 0. The upper bound is similar.
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Abstract. PageRank is a key element in the success of search engines,
allowing to rank the most important hits in the top screen of results. One
key aspect that distinguishes PageRank from other prestige measures
such as in-degree is its global nature. From the information provider
perspective, this makes it difficult or impossible to predict how their
pages will be ranked. Consequently a market has emerged for the opti-
mization of search engine results. Here we study the accuracy with which
PageRank can be approximated by in-degree, a local measure made freely
available by search engines. Theoretical and empirical analyses lead to
conclude that given the weak degree correlations in the Web link graph,
the approximation can be relatively accurate, giving service and infor-
mation providers an effective new marketing tool.

1 Introduction

PageRank has become a key element in the success of Web search engines, al-
lowing to rank the most important hits in the top page of results. Certainly
the introduction of PageRank as a factor in sorting results [1] has contributed
considerably to Google’s lasting dominance in the search engine market [2].

PageRank is not the only possible measure of importance or prestige among
Web pages. The simplest possible way to measure the prestige of a page is to
count the incoming links (in-links) to the page. There is a correlation between
the number of in-links that a page receives from other pages (in-degree) and
quality, especially when the in-degree is large. The in-degree of Web pages is
very cheap to compute and maintain, so that a search engine can easily keep
in-degree updated with the evolution of the Web.

However, in-degree is a local measure. All links to a page are considered
equal, regardless of where they come from. Two pages with the same in-degree
are considered equally important, even if one is cited by more prestigious sources
than the other. To modulate the prestige of a page with that of the pages pointing
to it means to move from the examination of an individual node in the link graph
to that of the node together with its predecessor neighbors. PageRank represents

W. Aiello et al. (Eds.): WAW 2006, LNCS 4936, pp. 59–71, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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such a shift from the local measure given by in-degree toward a global measure
where each Web page contributes to define the importance of every other page.

The use of PageRank in place of in-degree for applications such as ranking by
Web search engines relies on two assumptions: (i) PageRank is a quantitatively
different and better prestige measure compared to in-degree; and (ii) PageRank
cannot be easily guessed or approximated by in-degree. To wit, Amento et al. [3]
report a very high average correlation between in-degree and PageRank (Spear-
man ρ = 0.93, Kendall τ = 0.83) based on five queries. Further, they report the
same average precision at 10 (60%) based on relevance assessments by human
subjects. In this paper we further quantitatively explore these assumptions an-
swering the following questions: What is the correlation between in-degree and
PageRank across representative samples of the Web? How accurately can one
approximate PageRank from local knowledge of in-degree?

From the definition of PageRank, other things being equal, the PageRank of a
page grows with the in-degree of the page. Beyond this zero-order approximation,
the actual relation between PageRank and in-degree has not been thoroughly
investigated in the past. It is known that the distributions of PageRank and
in-degree follow an almost identical pattern [4,5], i.e., a curve ending with a
broad tail that follows a power law with exponent γ � 2.1. This fact may in-
dicate a strong correlation between the two variables. Surprisingly there is no
agreement in prior literature about the correlation between PageRank and in-
degree. Pandurangan et al. [4] show very little correlation based on analysis of
the brown.edu domain and the TREC WT10g collection. Donato et al. [5] report
on a correlation coefficient which is basically zero based on analysis of a much
larger sample (2 · 108 pages) taken from the WebBase [6] collaboration. On the
other hand, analysis of the University of Notre Dame domain by Nakamura [7]
reveals a strong correlation.

In Section 2 we estimate PageRank for a generic directed network within
a mean field approach. For a network without degree-degree correlations the
average PageRank turns out to be simply proportional to the in-degree, modulo
an additive constant. The prediction is validated empirically in Section 3, where
we solve the equations numerically for four large samples of the Web graph; in
each case the agreement between our theoretical estimate and the empirical data
is excellent. We find that the Web graph is basically uncorrelated, so the average
PageRank can be well approximated by a linear function of the in-degree. As an
additional contribution we settle the issue of the correlation between PageRank
and in-degree; the linear correlation coefficient is consistently large for all four
samples we have examined, in agreement with Nakamura [7]. Finally, in Section 4,
we present an application of our findings on the live Web.

2 Theoretical Analysis

The PageRank p(i) of a page i is defined through the following expression [1]:

p(i) =
q

N
+ (1 − q)

∑

j:j→i

p(j)/kout(j) i = 1, 2, . . . , N (1)

brown.edu
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where N is the total number of pages, j → i indicates a hyperlink from j to
i, kout(j) is the out-degree of page j and q is the so-called teleportation (or
jumping) factor. The set of Equations 1 can be solved iteratively. From Eq. 1 it
is clear that the PageRank of a page grows with the PageRank of the pages that
point to it. However, the sum over predecessor neighbors implies that PageRank
also increases with the in-degree of the page.

PageRank can be thought of as the stationary probability of a random walk
process with additional random jumps. The physical description of the process
is as follows: when a random walker is in a node of the network, at the next time
step with probability q it jumps to a randomly chosen node and with probability
1 − q it moves to one of its successors with uniform probability. In the case of
directed networks, a node may have no successors. In this case the walker jumps
to a randomly chosen node of the network with probability one. The PageRank
of a node i, p(i), is then the probability to find the walker at node i when the
process has reached the steady state, a condition that is always guaranteed by
the teleportation probability q.

The probability to find the walker at node i at time step n follows a simple
Markovian equation:

pn(i) =
q

N
+ (1 − q)

∑

j:kout(j) �=0

aji

kout(j)
pn−1(j) +

1 − q

N

∑

j:kout(j)=0

pn−1(j), (2)

where aji is the adjacency matrix with entry 1 if there is a direct connection
between j and i and zero otherwise. The first term in Eq. 2 is the contribution
of walkers jumping to a randomly chosen node, the second term is the random
walk contribution, and the third term accounts for walkers that at the previous
step were located in dangling nodes and now jump to random nodes. In the limit
n → ∞ this last contribution becomes a constant term affecting all the nodes
in the same way, and thus it can be removed from Eq. 2 under the constraint
that the final solution is properly normalized. Strictly speaking this would lead
to an effective teleportation term, which we omit to keep the notation simple.
Alternatively dangling nodes could be taken into account by a proper rescaling
of the the second term [8]. Hereafter we intend all sums over nodes to exclude
dangling ends, considering only nodes with kout > 0. The PageRank of page i is
the steady state solution of Eq. 2, p(i) = limn→∞ pn(i). Equation 2 cannot be
analytical solved. We propose a mean field solution of Eq. 2 that, nevertheless,
gives a very accurate description of the PageRank structure of the Web. The
mean field approach is often used in statistical physics, and is reliable when each
element of the system has many interaction partners,1 as in this case the effect
of the interactions can be taken into account in an average way, neglecting the
variations among the elements.

Instead of analyzing the PageRank of single pages, we aggregate pages in
classes according to their degree k ≡ (kin, kout) and define the average PageRank
of nodes of degree class k as
1 On hypercubic lattices, the mean field limit for most spin models is reached in four

dimensions, when each spin has eight neighbors.
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pn(k) ≡ 1
NP (k)

∑

i∈k

pn(i). (3)

Note that now “degree class k” means all the nodes with in-degree kin and out-
degree kout; P (k) is the probability that a node is in the degree class k. Taking
the average of Eq. 2 for all nodes of the degree class k we obtain

1
NP (k)

∑

i∈k

pn(i) =
q

N
+

(1 − q)
NP (k)

∑

i∈k

∑

j:kout(j) �=0

aji

kout(j)
pn−1(j). (4)

From Eq. 3 we see that the left-hand side of Eq. 4 is pn(k). In the right-hand
side we split the sum over j into two sums, one over all the degree classes k′ and
the other over all the nodes within each degree class k′. We get

pn(k) =
q

N
+

(1 − q)
NP (k)

∑

k′

1
k′

out

∑

i∈k

∑

j∈k′

ajipn−1(j). (5)

At this point we perform our mean field approximation [9], which consists in
substituting the PageRank of the predecessor neighbors of node i by its mean
value, that is,

∑

i∈k

∑

j∈k′

ajipn−1(j) � pn−1(k
′)
∑

i∈k

∑

j∈k′

aji

= pn−1(k
′)Ek′→k, (6)

where Ek′→k is the total number of links pointing from nodes of degree k′ to
nodes of degree k. This matrix can also be rewritten as

Ek′→k = kinP (k)N
Ek′→k

kinP (k)N
= kinP (k)NPin(k′|k), (7)

where Pin(k′|k) is the probability that a predecessor of a node belonging to
degree class k belongs to degree class k′. The conditional probability Pin(k′|k)
incorporates the so-called degree-degree correlation, i.e., the correlation between
the degree of a node and that of its neighbors (see [10] pp. 243–245). Using
Equations 6 and 7 in Eq. 5 we finally obtain

pn(k) =
q

N
+ (1 − q)kin

∑

k′

Pin(k′|k)
k′

out

pn−1(k
′), (8)

which is a closed set of equations for the average PageRank of pages in the
same degree class. When the network has degree-degree correlations, the so-
lution of this equation is non-trivial and the resulting PageRank can have a
complex dependence on the degree. However, in the particular case of networks
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without degree-degree correlations, the transition probability Pin(k′|k) becomes
independent of k and takes the simpler form

Pin(k′|k) =
k′

outP (k′)
〈kin〉

, (9)

where 〈·〉 denotes the average value of the quantity in brackets. Using this ex-
pression in Eq. (8) and taking the limit n → ∞, we obtain

p(k) =
q

N
+

1 − q

N

kin

〈kin〉
, (10)

that is, the average PageRank of nodes of degree class k is independent of kout

and proportional to kin.
The same type of analysis allows to estimate the size of the fluctuations of

PageRank for nodes in the same degree class k. It turns out that, for uncorrelated
networks, the standard deviation σ(k) of the PageRank distribution about its
mean value is

σ2(k) � (1 − q)4

N2〈kin〉3

〈
k2

in

kout

〉
kin. (11)

For large in-degrees, the coefficient of variation is

σ(k)
p(k)

� (1 − q)
[〈

k2
in

kout

〉
1

〈kin〉kin

]1/2

. (12)

The factor
〈

k2
in

kout

〉
in this expression can be very large when the network has

a long-tailed degree distribution, which implies that the relative fluctuations
are large for small in-degrees. Therefore the true PageRank of pages with small
in-degree may differ significantly from its mean field approximation. However,
for large in-degrees the relative fluctuations become less important — due to
the factor kin in the denominator — and the average PageRank from Eq. 10
gives a good approximation. Note that the expression in Eq. 12 relates to the
relative fluctuations within a degree class, rather than across the entire graph.
Since PageRank is distributed according to a power law with γ close to 2, the
overall fluctuations diverge in the limit of infinite graph size. An analysis of the
PageRank distribution and of the relative fluctuations within each degree class
is omitted here for brevity, and will be included in an extended version of this
paper.

3 Results

For an empirical validation of the theoretical predictions in the previous section,
we analyzed four samples of the Web graph. Two of them were obtained by crawls
performed in 2001 and 2003 by the WebBase collaboration [6]. The other two
were collected by the WebGraph project [11]: the pages belong to two national
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Table 1. Number of pages, links, and average degree (〈k〉 = 〈kin〉 = 〈kout〉) for the
four data sets we have analyzed

Data set WB 2001 .uk 2002 WB 2003 .it 2004

# pages 8.1 × 107 1.9 × 107 4.9 × 107 4.1 × 107

# links 7.5 × 108 2.9 × 108 1.2 × 109 1.1 × 109

〈k〉 9.34 15.78 24.05 27.50

Table 2. Exponents of the power law part of the PageRank distribution and linear
correlation coefficients between PageRank and in-degree

Data set WB 2001 .uk 2002 WB 2003 .it 2004

γ 2.2 ± 0.1 2.0 ± 0.1 2.0 ± 0.1 2.0 ± 0.1
ρ 0.538 0.554 0.483 0.733

domains, .uk (2002) and .it (2004), respectively. In Table 1 we list the number
of vertices and edges and the average degree for each data set.

We calculated PageRank with the standard iterative procedure; the factor q
was set to 0.15, as in the original paper by Brin and Page [1] and many successive
studies. In Fig. 1 we show the cumulative distributions of PageRank, i.e. the
function R(p) representing the probability that PageRank exceeds the value p.
Using the cumulative distribution allows to reduce the noise due to fluctuations
at large PageRank values. In all four cases we obtained a pattern with a broad
tail. The initial part of the distribution can be well fitted by a power law p−β

with exponent β between 1.0 and 1.2. The exponents for the actual PageRank
distribution are γ = β+1, so they range from 2.0 to 2.2, in agreement with other
studies [4,5]. The right-most part of each curve, corresponding to the pages with
highest PageRank, decreases faster. For the WebBase sample of 2001 the tail of
the curve up to the last point can be well fitted by a power law with exponent
β ≈ 1.6; in the other cases we see evidence of an exponential cutoff.

We also calculated the linear correlation coefficient between PageRank and
in-degree. In Table 2 we list Pearson’s ρ together with the slope of the power
law portions of the PageRank distributions. The correlation between PageRank
and in-degree is rather strong, in contrast to the findings of [4] and especially
[5] but in agreement with [7] and consistently with the high correlation observed
between in-degree and Kleinberg’s authority score [12].

Let us now validate the expression derived from our mean field analysis for
the average PageRank. We solved Eq. 8 with an analogous iterative procedure
as the one we used to calculate PageRank. We now look for the vector p̄(k),
defined for all pairs k ≡ (kin, kout) which occur in the network. Since PageRank
is a probability, it must be normalized so that its sum over all vertices of the
network is one. So we initialized the vector with the constant p̄0(k) = 1/N ,
and plugged it into the right-hand side of Eq. 8 to get the first approximation
p̄1(k). We then used p̄1(k) as input to get p̄2(k), and so on. We remark that
the expression of the probability Pin(k′|k) is not a necessary ingredient of the
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Fig. 1. Cumulative distributions of PageRank

calculation. In fact, the sum on the right-hand side of Eq. 8 is just the average
value of p̄n−1(k′)/k′

out among all predecessors of vertices with degree k. The
algorithm leads to convergence within a few iterations (we never needed more
than 20). In Fig. 2 we compare the values of p̄(k) calculated from Eq. 8 with
the corresponding empirical values. Here we averaged p̄(k) over out-degree, so it
only depends on the in-degree kin. The variation of p̄(k) with kout (for fixed kin)
turns out to be very small. The scatter plots of Fig. 2 show that the mean field
approximation gives excellent results: the points are very tightly concentrated
about each frame bisector, drawn as a guide to the eye.

Next let us analyze explicitly the relation between PageRank and in-degree. To
plot the function p̄(kin) directly is not very helpful because the wide fluctuations
of PageRank within each degree class would mystify the pattern for large values
of kin. So we average PageRank within bins of in-degree, which is the standard
procedure to derive trends from scatter plots (see [10] pp. 240–242). As both
PageRank and in-degree are power-law distributed, we use logarithmic bins; the
multiplicative factor for the bin size is 1.3. The resulting patterns for our four
Web samples are presented in Fig. 3. The empirical curves are rather smooth,
and show that the average PageRank (per degree class) is an increasing func-
tion of in-degree. The relation between the two variables is approximately linear
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Fig. 2. Scatter plots of the empirical average PageRank per degree class versus our
mean field (MF) estimate

for large in-degrees. This is exactly what we would expect if the degrees of
pages were uncorrelated with those of their neighbors in the Web graph (cf.
Section 2). In such a case the relation between PageRank and in-degree is given
by Eq. 10. Indeed, the comparison of the empirical data with the curves of
Eq. 10 in Fig. 3 is quite good for all data sets. We infer that the Web graph is
an essentially uncorrelated graph; this is confirmed by direct measurements of
degree-degree correlations in our four Web samples [13]. What is most important,
the average PageRank of a page with in-degree kin is well approximated by the
simple expression of Eq. 10.

4 Applications to the Live Web

Knowing the relationship between PageRank and in-degree has potential appli-
cations for the Web graph. It is vital for many service and information providers
to have good rankings by major search engines for relevant keywords, given
that search engines are the primary way that Internet users find and visit Web
sites [14,15]. Consequently a demand has emerged for companies that perform
so-called search engine optimization or search engine marketing on behalf of
business clients. The goal is to increase the rankings of their pages, thus direct-
ing traffic to their sites [16].
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Fig. 3. PageRank versus in-degree; the dashed line is the approximation given by the
closed formula of Eq. 10

In the previous section we have shown that the average PageRank of a page
with in-degree kin can be well approximated by the closed formula in Eq. 10. So
Web authors may use local in-degree information as a proxy for estimating the
global PageRank of their sites.

To use Eq. 10 for the Web we need to know the total number N of Web pages
indexed by a search engine, say Google, and their average degree 〈kin〉. The
size of the Google index was published until recently; we use the last reported
number, N � 8.1× 109. The average degree is not known; the best we can do is
extract it from samples of the Web graph. Our data sets do not deliver a unique
value for 〈kin〉, but they agree on the order of magnitude (see Table 1). Hereafter
we use 〈kin〉 = 10.

Let us now consider whether Eq. 10 can be useful in the live Web. Ideally we
should compare the PageRank values of a list of Web pages with the correspond-
ing values derived through our formula. Unfortunately the real PageRank values
calculated by a search engine such as Google are not accessible, so we need a
different strategy. The simplest choice is to focus on rank rather than PageRank.
We know that Google ranks Web pages according to their PageRank values as
well as other features which do not depend on Web topology. The latter features
are not disclosed; in the following we disregard them and assume for simplic-
ity that the ranking of a Web page exclusively depends on its PageRank value.
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There is a simple relation between the PageRank p of a Web page and the rank
R of that page. The Zipf function R(p) is simply proportional to the cumulative
distribution of PageRank. Since the PageRank distribution is approximately a
power law with exponent γ � 2.1 (see Section 3), we find that

R(p) � Ap−β , (13)

where β = γ − 1 � 1.1 and A is a proportionality constant. The rank R referred
to above is the global rank of a page of PageRank p, i.e., its position in the
list containing all pages of the Web in decreasing order of PageRank. More
interesting for information providers and search engine marketers is the rank
within hit lists returned for actual queries, where only a limited number of
result pages appear. We need a criterion to pass from the global rank R to the
rank r within a query’s hit list. A page with global rank R could appear at any
position r = 1, 2, . . . , n in a list with n hits. In our framework pages differ only
by their PageRank values (or, equivalently, by their in-degrees), as we neglect
lexical and other features. Therefore we can assume that each Web page has the
same probability to appear in a hit list. This is a strong assumption, but even
if it may fail to describe what happens at the level of an individual query, it is
a fair approximation when one considers a large number of queries. Under this
hypothesis the probability distribution of the possible positions is a Poissonian,
and the expected local rank r of a page with global rank R is given by the mean
value:

r = R
n

N
. (14)

Now it is possible to test the applicability of Eq. 10 to the Web. We are able
to estimate the rank of a Web page within a hit list if we know the number
of in-links kin of the page and the number n of hits in the list. The procedure
consists of three simple steps:

1. from kin we calculate the PageRank p of the page according to Eq. 10;
2. from p we determine the global rank R according to Eq. 13;
3. from R and n we derive the local rank r according to Eq. 14.

The combination of the three steps leads to the following expression of the
local rank r as a function of kin and n:

r =
An

( q
N + 1−q

N〈kin〉kin)1.1N
. (15)

We remark that A is a simple multiplicative constant, and its value has no effect
on the dependence of the local rank r on the variables kin and n. Therefore we
decided to consider it as a free parameter, whose value is to be determined by
the comparison with empirical data.

For our analysis we used a set of 65, 207 actual queries from a September
2001 AltaVista log. We submitted each query to Google, and picked at random
one of the pages of the corresponding hit list. For each selected page, we stored
its actual rank remp within the hit list, as well as its number kin of in-links,
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Fig. 4. Density map of the scatter plot between predicted rank rest and actual rank
remp for 65,207 queries. The fraction of points in each log-size bin is expressed by the
color, also on a logarithmic scale. The diagonal guide to the eye is rest = remp.

which was again determined through Google.2 The number n of hits of the list
was also stored. Google (like other search engines) never displays more than
1000 results per query, so we always have remp ≤ 1000. From kin and n we
estimated the theoretical rank rest by means of Eq. 15, and compared it with
its empirical counterpart remp. The comparison can be seen in the scatter plot
of Fig. 4. Given the large number of queries and the broad range of rank values,
we visualize the density of points in logarithmic bins. The region with highest
density is a stripe centered on the diagonal line rest = remp by a suitable choice
of A (A = 1.5 × 10−4). We conclude that the rank derived through Eq. 15 is in

2 The in-degree data provided by search engines is only an estimate of the true number.
First, a search engine can only know of links from pages that it has crawled and
indexed. Second, for performance reasons, the algorithms counting inlinks use various
unpublished approximations based on sampling.
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most cases close to the empirical one. We stress that this result is not trivial,
because (i) Web pages are not ranked exclusively according to PageRank; (ii) we
are neglecting PageRank fluctuations; and (iii) all pages do not have the same
probability of being relevant with respect to a query.

5 Discussion

In this paper we have quantitatively explored two key assumptions around the
current search status quo, namely that PageRank is very different from in-degree
due to its global nature and that PageRank cannot be easily guessed or approx-
imated without global knowledge of the Web graph. We have shown that due to
the weak degree-degree correlations in the Web link graph, PageRank is strongly
correlated with in-degree and thus the two measures provide very similar infor-
mation, especially for the most popular pages. Further, we have introduced a
general mean field approximation of PageRank that, in the specific case of the
Web, allows to estimate PageRank from only local knowledge of in-degree. We
have further quantified the fluctuations of this approximation, gauging the re-
liability of the estimate. Finally we have validated the approach with a simple
procedure that predicts how actual Web pages are ranked by Google in response
to actual queries, using only knowledge about in-degree and the number of query
results.
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Abstract. This paper presents a novel stochastic model that explains
the relation between power laws of In-Degree and PageRank. PageRank
is a popularity measure designed by Google to rank Web pages. We
model the relation between PageRank and In-Degree through a stochas-
tic equation, which is inspired by the original definition of PageRank.
Using the theory of regular variation and Tauberian theorems, we prove
that the tail distributions of PageRank and In-Degree differ only by a
multiplicative constant, for which we derive a closed-form expression.
Our analytical results are in good agreement with Web data.

Categories and Subject Descriptors
H.3.3:[Information Storage and Retrieval]: Information Search and
Retrieval– Retrieval models; G.3:[Mathematics of Computing]: Prob-
ability and statistics – Stochastic processes, Distribution functions

General Terms
Theory, Verification, Experimentation, Algorithms

Keywords: PageRank, In-Degree, Power law, Regular variation, Sto-
chastic equation, Web measurement.

1 Introduction

We study the relation between the probability distributions of the PageRank
and the In-Degree of a randomly selected Web page. In this paper we present
the mathematical model and main results while more detailed discussion and
proofs can be found in the extended version [1]. The notion of PageRank was
introduced by Google in order to numerically characterize the popularity of Web
pages. The original description of PageRank presented in [2] is as follows:

PR(i) = c
∑

j→i

1
dj

PR(j) + (1 − c), (1)

where PR(i) is the PageRank of page i, dj is the number of outgoing links
of page j, the sum is taken over all pages j that link to page i, and c is the
“damping factor”, which is some constant between 0 and 1. The In-Degree of a
Web page denotes simply the number of incoming hyperlinks to that page. From
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equation (1) it is clear that the PageRank of a page depends on its In-Degree
and the importance (i.e. PageRanks) of the pages that link to it.

We focus in particular on the tail asymptotics for PageRank and its connection
to In-Degree. By tail of the PageRank distribution we simply mean the fraction
of pages P(PR > x) having PageRank greater than x, where x is large. A
common way to analyze tail behavior is to find an asymptotic expression p(x)
such that P(PR > x)/p(x) → 1 as x → ∞. In this case, p(x) and P(PR > x) are
asymptotically equivalent, and thus, we can approximate P(PR > x) by p(x) for
large enough x.

Pandurangan et al. [3] observed that the tails of PageRank and In-Degree
distributions for Web data seem to follow power laws with the same exponent.
Recent extensive experiments by Donato et al. [4] and Fortunato et al. [5] con-
firmed this phenomenon. Becchetti and Castillo [6] investigated the influence of
the damping factor c on the power law behavior of PageRank. They have shown
that the PageRank of the top 10% of the nodes always follows a power law with
the same exponent independent of the value of the damping factor.

Obviously, equation (1) suggests that PageRank and In-Degree are intimately
related, but this formula by itself does not explain the observed similarity in tail
behavior. Furthermore, the linear algebra methods that have been commonly
used in the PageRank literature [7,8] and proved very successful for designing
efficient computational methods, seem to be insufficient for modelling and ana-
lyzing the asymptotic properties of the PageRank distribution.

The goal of our paper is to provide mathematical evidence for the power-
law behavior of PageRank and its relation to the In-Degree distribution. Our
approach is inspired by techniques from applied probability and stochastic op-
erations research. The relation between PageRank and In-Degree is modelled
through a distributional identity, which is analogous to the equation for the
busy period in the M/G/1 queue (see e.g. [9]). Further, we analyze our model
using the approach employed in [10] for studying the tail behavior of the busy
period in case the service times are regularly varying random variables. This fits
in our research because regular variation is in fact a formalization of the power
law, and it has been widely used in queueing theory to model self-similarity,
long-range dependence and heavy tails [11]. Thus, we use the notion of regular
variation to model the power law distribution of In-Degree.

To obtain the tail behavior of PageRank in our model, we use Laplace-Stieltjes
transforms and apply Tauberian theorems presented in the paper by Bingham
and Doney [12], see also Theorem 8.1.6 in [13]. Even though our model contains
some rather rigid simplifying assumptions – the most notable being indepen-
dence between pages that link to the same page and a constant Out-Degree for
all pages – these techniques allow us to prove the similarity in tail behavior for
PageRank and In-Degree, thus suggesting that our assumptions do not touch
upon the underlying reasons for this similarity. Moreover, our analysis allows to
explicitly derive the multiplicative constant that quantifies the difference bet-
ween PageRank and In-Degree tail behavior. Our analytical results show a good
agreement with Web data.
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2 Preliminaries

This section describes important properties of regularly varying random vari-
ables. We follow definitions and notations by Bingham and Doney [12], Meyer
and Teugels [10], and Zwart [11]. More comprehensive details can be found
in [13].

Definition 1. A function L is said to be slowly varying if for every t > 0,

L(tx)
L(x)

→ 1 as x → ∞.

Definition 2. A random variable X is said to be regularly varying with index
α if its distribution is such that

P(X > x) ∼ x−αL(x) as x → ∞,

for some positive slowly varying function L(x). Here, as in the remainder of this
paper, the notation a(x) ∼ b(x) means that a(x)/b(x) → 1.

Denote by f(s) = Ee−sX , s > 0, the Laplace-Stieltjes transform of X , and let
ξn = EXn be the nth moment of X , where n ∈ N. The successive moments of
X can be obtained by expanding f in a series at s = 0. More precisely, we have
the following.

Lemma 1. The nth moment of X is finite if and only if there exist numbers
ξ0 = 1 and ξ1, ..., ξn, such that

f(s) −
n∑

i=0

ξi

i!
(−s)i = o(sn) as s → 0.

If ξn < ∞ then we introduce the notation

fn(s) = (−1)n+1

(
f(s) −

n∑

i=0

ξi

i!
(−s)i

)
. (2)

Note 1. It follows from Lemma 1 that EXn < ∞ if and only if there exist
numbers ξ0 = 1 and ξ1, ..., ξn such that fn(s) = o(sn) as s → 0.

The following theorem establishes the relation between asymptotic behavior of
a regularly varying distribution and its Laplace-Stieltjes transform. This result
plays an essential role in our analysis.

Theorem 1. (Tauberian Theorem) If n ∈ N, ξn < ∞, α = n + β, β ∈ (0, 1),
then the following are equivalent

(i) fn(s) ∼ (−1)nΓ (1 − α)sαL(1
s ) as s → 0,

(ii) P(X > x) ∼ x−αL(x) as x → ∞.

Here and in the remainder of the paper we use the letter α to denote the index
of the tail probability P(X > x).
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3 Model

In this section we introduce a model that describes the relation between Page-
Rank and In-Degree in the form of a stochastic equation. This model naturally
follows from the definition of PageRank in (1), and is analytically tractable, thus
enabling us to obtain the asymptotic behavior of PageRank. As will become
clear, we make several rather strong simplifying assumptions. Nevertheless, the
theoretical results of this model show a good match with observed Web graph
behavior.

3.1 Relation between In-Degree and PageRank

Our goal now is to describe the relation between PageRank and In-Degree. To
this end, we keep equation (1) almost unchanged but we transform it into a
stochastic equation. Let R be the PageRank of a randomly chosen page. We treat
R simply as a random variable whose distribution we want to determine. Further,
we view the In-Degree of a random page as a random variable N , which follows a
power law. The model for N will be specified in Section 3.2 below. In this work,
we assume that the number of outgoing links (Out-Degree) d ≥ 1 is the same
for each page. This assumption is obviously not realistic; in particular it ignores
the presence of ‘hubs’ (pages with extremely high Out-Degree) and ‘dangling
nodes’ (pages with Out-Degree zero). The idea behind this rigid simplification
is that we want to focus on the influence of the In-Degree, without considering
other factors. Besides, it is a common belief that Out-Degrees do not affect the
PageRank distribution, and it is also well-known (see e.g. [14]) that dangling
nodes alter the PageRank vector only by a multiplicative constant. We note
however that the proposed stochastic model allows for extensions. For instance,
in the upcoming paper [15], we account for dangling nodes and allow for an
arbitrary Out-Degree distribution.

Under the assumptions above, the random variable R satisfies a distributional
identity

R
d= c

N∑

j=1

1
d
Rj + (1 − c). (3)

We now make the assumption that N and the Rj ’s are independent, and that
the Rj ’s have the same distribution as R itself. We note that the independence
assumption is not true in general. However, it is also not the case that the
PageRank values of the pages linking to the same page i are directly related, so
we may assume independence in this study.

The novelty of our approach is that we treat PageRank as a random variable
which solves a certain stochastic equation. We believe, this approach is quite
natural if our goal is to explain the power law behavior of PageRank because the
power law is merely a description of a certain class of probability distributions.
In fact, this point of view is in line with Pandurangan et al. [3] and other authors
who consistently present log-log histograms of PageRank.
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One of the nice features of the stochastic equation (3) is that it has the same
form as the original formula (1). Thus, we may hope that our model correctly
describes the relation between In-Degree and PageRank. This is easy to verify
in the extreme (unrealistic) case when all pages have the same In-Degree d. In
this situation, the PageRanks of all pages are equal, and it is easy to see that
R ≡ 1 constitutes the unique solution of (3).

3.2 In-Degree Distribution

It is well-known that the In-Degree of Web pages follows a power law. For our
analysis however we need a more formal description of this random variable,
thus, we suggest to employ the theory of regular variation. We model the In-
Degree of a randomly chosen page as a nonnegative, integer, regularly varying
random variable, which is distributed as N(X), where X is regularly varying
with index α:

P(X > x) ∼ x−αL(x) as x → ∞,

and N(x) is the number of Poisson arrivals on the time interval [0, x]. Without
loss of generality, we assume that the rate of the Poisson process is equal to 1.

The advantage of this construction is that we do not need to impose any
restrictions on X and at the same time ensure that the In-Degree is integer. It
is intuitively clear that N(X) is asymptotically equivalent to X , that is, N(X)
and X follow the same power law. Specifically, we have

P(N(X) > x) ∼ P(X > x) as x → ∞. (4)

For the proof of (4) using the Tauberian theorem (Theorem 1) see e.g. [1].

3.3 The Main Stochastic Equation

Combining the ideas from Sections 3.1 and 3.2, we arrive at the following
equation

R
d= c

N(X)∑

j=1

1
d
Rj + (1 − c), (5)

where c ∈ (0, 1) is the damping factor, d ≥ 1 is the fixed Out-Degree of each page,
and N(X) describes the In-Degree of a randomly chosen page as the number of
Poisson arrivals on a regularly varying time interval X . As we discussed above,
stochastic equation (5) adequately captures several important aspects of the
PageRank distribution and its relation to the In-Degree distribution. Moreover,
our model is completely formalized, and thus we can apply analytical meth-
ods in order to derive the tail behavior of the random variable R representing
PageRank.

Linear stochastic equations like (5) have a long history. In particular, (5) is
similar to the famous equation that arises in the theory of branching processes
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and describes many real-life phenomena, for instance, the distribution of the
busy period in the M/G/1 queue:

B
d=

N(S1)∑

i=1

Bi + S1,

where B is the distribution of the busy period (the time interval during which
the queue is non-empty), S1 is the service time of the customer that initiated
the busy period, N(S1) is the number of Poisson arrivals during this service time
and the Bi’s are independent and distributed as B. We refer to [9] and other
books on queueing theory for more details. Also, see Zwart [11] for an excellent
detailed treatment of queues with regular variation, and specifically the busy
period problem. We would like to add that our equation (5) is a special case in
a rich class of stochastic recursive equations that were discussed in detail in the
recent survey by Aldous and Bandyopadhyay [16].

This concludes the model description. The next step will be to use our model
for providing a rigorous explanation of the indicated connection between the
distributions of In-Degree and PageRank.

4 Analysis

The idea of our analysis is to write down an equation for the Laplace-Stieltjes
transforms of X and R and then make use of the Tauberian theorem to prove
that R is regularly varying with the same index as X . Since X and N(X) are
asymptotically equivalent, this will give us the desired similarity in tail behavior
of the PageRank R and the In-Degree N(X).

Let r be the the Laplace-Stieltjes transform of R. As a result of the assump-
tions from Section 3, we can use (5) to express r in terms of f , the Laplace-
Stieltjes transform of X , as follows:

r(s) := Ee−sR = e−s(1−c)
E

⎡

⎣E

⎡

⎣exp

⎛

⎝−s
c

d

N(X)∑

i=1

Ri

⎞

⎠

∣∣∣∣∣∣
N(X)

⎤

⎦

⎤

⎦

= e−s(1−c)
E

[(
E

[
exp

(
−s

c

d
Ri

)])N(X)
]

= e−s(1−c)
E

[
E

[(
r
(
s

c

d

))N(X)
∣∣∣∣X

]]

= e−s(1−c)
E exp

(
−
(
1 − r

(
s

c

d

))
X
)

= e−s(1−c)f
(
1 − r

( c

d
s
))

.

It can be shown that for the typical values d > 1 and 0 < c < 1 the above equation
has a unique solution r(s) which is completely monotone and has r(0) = 1.

We start the analysis with providing the correspondence between existence
of the n-th moments of X and R. We remind that ξ1, . . . , ξn denote the first
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n moments of X . Further, denote the first n moments of R by ρ1, . . . , ρn, and
define

rn(s) = (−1)n+1

(
r(s) −

n∑

k=0

ρk

k!
(−s)k

)
,

as in (2). Note that taking expectations on both sides of (5) we easily obtain
ER = ρ1 = 1. This follows from the independence of N(X) and the Rj ’s and
the fact that EN(X) = EX = ξ1 = d.

The next lemma holds.

Lemma 2. The following are equivalent

(i) ξn < ∞,
(ii) ρn < ∞.

Note 2. Similar as in Note 1, we can reformulate Lemma 2 as

fn(s) = o(sn) if and only if rn(s) = o(sn).

Note 3. Note that the stochastic inequality R
d
> (1 − c)

(
c
dN(X) + 1

)
implies

that the tail of the PageRank R is at least as heavy as the tail of the In-
Degree N(X).

The proof of Lemma 2 is quite lengthy and is therefore omitted. The interested
reader is referred to the full version of this paper, see [1]. Same applies to the
proof of Corollary 1 below.

Corollary 1. The following holds:

rn(s) − drn

( c

d
s
)

= fn(t) + O(tn+1),

where t = 1 − r
(

c
ds
)
.

Now we are ready to explain the similarity between the In-Degree and PageRank
distributions. Specifically, we show that the tail probabilities P(R > x) and
P(N(X) > x) for PageRank and In-Degree, respectively, approximately differ
by a multiplicative constant as x grows large. The next theorem formalizes this
statement.

Theorem 2. The following are equivalent

(i) P(N(X) > x) ∼ x−αL(x) as x → ∞,

(ii) P(R > x) ∼ cα

dα − cαd
x−αL(x) as x → ∞.

Proof.
(i) → (ii) From (i) and (4) it follows that

P(X > x) ∼ x−αL(x) as x → ∞. (6)
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Theorem 1 also implies that (6) is equivalent to fn(t) ∼ (−1)nΓ (1 − α)tαL
(

1
t

)
,

where t(s) = 1 − r
(

c
ds
)
∼ (c/d)s as s → 0. Hence, by Corollary 1 we obtain

rn(s) − drn

( c

d
s
)
∼ (−1)nΓ (1 − α)

( c

d

)α

sαL

(
1
s

)
as s → 0. (7)

Then also for every k ≥ 0, as s → 0, we have

rn

(( c

d

)k

s

)
− drn

(( c

d

)k+1

s

)
∼ (−1)nΓ (1 − α)

( c

d

)α ( c

d

)αk

sαL

(
1

(
c
d

)k
s

)

∼ (−1)nΓ (1 − α)
( c

d

)α ( c

d

)αk

sαL

(
1
s

)
.

Next, we write rn(s) in the form of an infinite sum as follows:

rn(s) =
∞∑

k=0

dk

(
rn

(( c

d

)k

s

)
− drn

(( c

d

)k+1

s

))
.

From the above representation we obtain

rn(s) ∼ (−1)nΓ (1 − α)
dα

dα − cαd

( c

d

)α

sαL

(
1
s

)
as s → 0.

Now we again invoke Theorem 1, which leads to (ii).
(ii) → (i) The proof follows easily from (ii) and Corollary 1.

Thus, we have shown that the asymptotic behaviors of PageRank and In-
Degree differ by the multiplicative constant cα

dα−cαd , while the power law expo-
nent remains the same. In the next section we will experimentally verify this
result.

5 Numerical Results

We verified our findings by computing PageRank on the public data of the
Stanford Web from [17]. To identify the power law behavior, we used cumulative
log-log plots, which are much less noisy than histograms.

In order to compute the slope α, we used the following maximum likelihood
estimator proposed by Newman [18]:

α = 1 + n

(
n∑

i=1

ln
xi

xmin

)−1

. (8)

Here the quantities xi, i = 1, . . . , n, are the measured values, and xmin usually
corresponds to the smallest value of X for which the power law behavior is
assumed to hold.
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Fig. 1. Plots for the Web data. Fraction of pages with In-Degree/PageRank greater
than x versus x in log-log scale, and the fitted straight lines.

There are several papers, see [3,4,5], and [6] that describe similar experiments
for different domains and different number of pages, and they all confirm that
PageRank and In-Degree follow power laws with the same exponent, around 1.1
for the cumulative distribution function.

We calculated all PageRank values for the Web graph with 281903 nodes
(pages) and ∼ 2.3 million edges (links) using the standard power method (see
e.g. [8]). On this dataset, the average Out-Degree, and hence average In-Degree
is 8.2. In Figure 1 we show the log-log plots for In-Degree and PageRank of
the Stanford Web Data, for different values of the damping factor (c = 0.1, 0.5
and 0.9). Clearly, these empirical values of In-Degree and PageRank constitute
parallel straight lines for all values of the damping factor, provided that the
PageRank values are reasonably large. It was observed in [6] that in general,
PageRank depends on the damping factor but the PageRank of the top 10% of
pages obeys a power law with the same exponent as the In-Degree, independent
of the damping factor. This is in perfect agreement with our experimental results
and the mathematical model, which is focused on the right tail behavior of the
PageRank distribution.

The calculations based on the maximum likelihood method yield a slope −1.1,
which verifies that In-Degree and PageRank have power laws with the same
exponent α = 1.1 (this corresponds to the well known value 2.1 for the his-
togram). More precisely, in Figure 1 we fitted the lines y = −1.1x + 0.08, y =
−1.1x− 0.87, y = −1.1x− 1.27, and y = −1.1x− 2.07 to the plots of In-Degree
and PageRank (with c = 0.9, c = 0.5 and c = 0.1, respectively).

We also investigated whether Theorem 2 correctly predicts the multiplicative
constant

y(c) =
cα

dα − cαd
.
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Fig. 2. The theoretical and observed differences between logarithmic asymptotics of
In-Degree and PageRank

In Figure 2 we plotted log10(y(c)) and we compared it to the observed dif-
ferences between the logarithms of the complementary cumulative distribution
functions of PageRank and In-Degree, for different values of the damping fac-
tor. Obviously, in the data set, the assumption that all Out-Degrees are equal
to some constant d is not satisfied. Therefore, we take d = 8.2, which is equal
to the average In/Out-Degree in the Web data. As can be seen, the theoretical
and observed values are quite close. E.g., for typical values of c between 0.8 and
0.9, the difference is 0.41, resulting in a factor y(c) that is only a factor 2.57
larger than in the observed data. Thus, our model not only allows to prove the
similarity in the power law behavior but also gives a good approximation for the
difference between the two distributions.

The discrepancy between the predicted and observed values of the multiplica-
tive constant suggests that our model does not capture PageRank behavior to
the full extent. For instance, the assumption of the independence of PageRank
values of pages that have a common neighbor may be too strong. We believe
however that the achieved precision, especially for small values of c, is quite
good for our relatively simple stochastic model.

6 Discussion

Our model and analysis resulted in the conclusion that PageRank and In-Degree
should follow power laws with the same exponent. Growing Network models
may provide an alternative explanation [19,20]. For instance, Avrachenkov and
Lebedev [19] showed that in Growing Networks, introduced by Barabási and
Albert [21], the expected PageRank follows a power law with an exponent, which
does depend on the damping factor but equals ≈ 1.08 for c = 0.85. Note that our
present model suggests that the power law exponent of PageRank does not de-
pend on the damping factor. We emphasize that compared to [19,20], our model
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provides a completely different approach for modelling the relation between In-
Degree and PageRank because we do not make any assumption on the structure
or growth of the underlying Web graph.

We can further exploit the analogy between the PageRank equation and the
equation for the busy period in M/G/1 queue, since sophisticated probabilistic
techniques have been developed for analyzing queueing systems with heavy tails
and in particular the busy period problem (see e.g. [11]). It is interesting to apply
these advanced methods to the problems related to the Web and PageRank.

Our current model lacks the dependencies between PageRank values of pages
sharing a common neighbor. Such dependencies must be present in the Web in
particular due to the high clustering of the Web graph [18] (roughly speaking,
clustering means that with high probability, two neighbors of the same page are
connected to each other). In our further research we will try to include some
sort of dependencies along with dangling nodes and random Out-Degrees [15].
Besides, we could also consider personalization or topic sensitivity [22]. The
impact of these factors on the PageRank distribution could be determined by
extending and generalizing the proposed analytical model.
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Abstract. We study the problem of identifying and ranking the mem-
bers of a community in a very large network with link analysis only,
given a set of representatives of the community. We define the concept
of a community justified by a formal analysis of a simple model of the
evolution of a directed graph. We show that the problem of deciding
whether a non trivial community exists is NP complete. Nevertheless,
experiments show that a very simple greedy approach can identify mem-
bers of a community in the Danish part of the web graph with time
complexity only dependent on the size of the found community and its
immediate surroundings. The members are ranked with a “local” variant
of the PageRank algorithm. Results are reported from successful exper-
iments on identifying and ranking Danish Computer Science sites and
Danish Chess pages using only a few representatives.

1 Introduction

A community in a network is a set of somewhat isolated vertices linking heavily
to each other - for example a set of pages in the web graph related to a par-
ticular topic. People controlling a group of vertices (and their outgoing links)
in a community are always looking for answers to the questions “How strong
are the positions in the community for the members in my group?” and “How
can these positions be improved?”. The main objective for the work behind this
paper is to establish a model of the community producing satisfactory answers
to the first question. The model should also be small enough to enable a formal
analysis leading to answers to the second question.

The purpose of the techniques in this paper is not to partition the network
in to several communities. The purpose is to isolate and rank the members of
a single community given by a set of representatives. Before the discussion of
related work we would like to introduce the notation used in this paper.

In this paper G = (V, E) denotes a directed graph where multiple occurrences
of (u, v) ∈ E are allowed. We will call (u, v) ∈ E a link on u and say that u links
to v etc. A link could for example represent a link from site u to site v in the

� The research is partly sponsored by the Danish company Cofman (www.cofman.
com)

W. Aiello et al. (Eds.): WAW 2006, LNCS 4936, pp. 84–96, 2008.
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web graph or a reference in a paper written by u to a paper written by v. We
define the relative attention that u shows v as wuv = m(u,v)

outdeg(u) where m(u, v) is
the multiplicity of link (u, v) in E. If outdeg(u) = 0 then wuv = 0. For C ⊆ V
we let wuC =

∑
c∈C wuc, i.e. the attention that u shows the set of vertices C. In

this paper we will reserve the term edge for an undirected graph.

1.1 Related Work

The problem of finding community structures in networks has been subject to a
great deal of research - see e.g. [11].

Bagrow et al. [3] present a “local” method for detecting the community given
by a single representative. A breadth first search from the representative stops
when the number of edges connecting the visited vertices with un-visited vertices
drops in a special way and reports the visited vertices as a community. Bagrow
et al. repeat this procedure for each vertex and analyzes the overlap of the
communities in order to eliminate problems with what the authors call “spill-
over” of the breadth first search.

Formal definitions of communities are provided by Flake and different co-
authors in [5] and [6]. According to [5] a community in an undirected graph
with edges of unit capacity is a set of vertices C such that for all v ∈ C, v
has at least as many edges connecting to vertices in C as it does to vertices
in C̄ = V − C. Using the notion of relative attention extended to undirected
graphs, this is ∀v ∈ C : wvC ≥ 1

2 . Flake et al. show in [5] how to identify a
community containing a set of representatives as an s-t minimum cut in a graph
with a virtual source s and virtual sink t. They show how the method can process
only the neighborhood of the representatives yielding a local method with time
complexity dependent on the size of the neighborhood. It is not possible for a
vertex within a distance of more than two from the representatives to join the
community for this “local” variant of their method.

The web graph is treated as a weighted undirected graph in [6] with an edge
between page i and page j if and only if there is a link from page i to j or vice
versa. Edge {i, j} has weight wij +wji following our definitions of attention. The
graph is expanded with a virtual vertex t connected to all vertices with edges
with the same weight α and the community of page s is defined by means of an
s-t minimum cut. The members of such a community can be identified with a
maximum flow algorithm.

The definitions in [5] and [6] are not based on a model of the evolution of a
graph. It should also be noted that it seems impossible for a universally popular
member to be a member of a small community by the definitions in [5] and
[6]. A relatively high in-degree of a member will prevent it from being on the
community side of a minimum cut. In fact any member v of a relatively small
community in a relatively large network is risking being forced to leave the
community if v attracts some attention from non community members if the
community definition is based on minimum cuts and the graph is undirected.

Recently Andersen et al. [1] and Andersen and Lang [2] presented some very
interesting approaches to identifying communities containing specific vertices. In



86 M. Olsen

both papers random walks are used to identify the communities. The graphs are
assumed to be unweighted and undirected where this paper deals with directed
graphs.

The search engine Google uses the PageRank algorithm [4,12] to calculate a
universal measure of the popularity of the web pages. For a given search query
the universal measure is combined with a measure of relevance with respect to
the query in order to rank the web pages. Several variants of the PageRank
algorithm have been proposed to make it personalized or topic/query specific -
see for example [8,9,13].

1.2 Our Results

We present a community definition justified by a formal analysis of a very sim-
ple model of the evolution of a directed graph. We show that the problem of
deciding whether a community C �= V exists such that R ⊆ C for a given set of
representatives R is NP complete. Nevertheless, we show that a fast and simple
parameter free greedy approach performs well when detecting communities in
the Danish part of the web graph. The time complexity of the approach is only
dependent on the size of the found community and its immediate surroundings.
Our method is “local” as the method in [3] but it does not use breadth first
searches. We also show how to use a computationally inexpensive local variant
of PageRank to rank the members of the communities and compare the ranking
with the PageRank for the total graph.

These are two possible applications of the algorithms presented in this paper:

– Consider the following scenario: A user interested in Computer Science visits
some sites on this subject. A piece of software running in the background
finds that the Computer Science sites are similar by analyzing the content
of the sites. It uses the Computer Science sites as the set R and reports a
community C containing R with the sites ranked by our ranking algorithm.
A real world example in Sect. 4.2 documents that this list could be very
useful to the user!

– The ranking of the members of a community is the stationary probability
distribution of a Markov Chain with the community as the state space.
This Markov Chain can form the basis for an analysis leading to answers to
questions like “Which link modifications would be optimal wrt. ranking for
our group of nodes?”.

In Sect. 2 the community definition and the greedy approach for identify-
ing community members are presented. The ranking algorithm is introduced in
Sect. 3 and the experiments are reported in Sect. 4.

2 Locating Communities

2.1 Community Definition

The intuition behind our community definition is that every community member
shows more attention to the community than any non member:



Communities in Large Networks: Identification and Ranking 87

Definition 1. A community is a set C ⊆ V such that

∀u ∈ C, ∀v ∈ C̄ : wuC ≥ wvC .

Consider the following process: Assume the existence of a set C ⊂ V and numbers
p1 and p2 with 0 ≤ p1 < p2 ≤ 1 such that the following holds: Every time a vertex
u ∈ C links to another vertex it will link to a member in C with probability p2.
Every time a vertex v ∈ C̄ establishes a link it will link to a member in C with
probability p1. Each member of V establishes exactly q links independently of
all other links established.

The number p2 can be smaller than 1
2 which means that the members of

C does not necessarily predominantly link to other members of C as supposed
in [5].

Definition 1 is justified by the following theorem:

Theorem 1. Consider the process defined above and let n = |V |. If
α =

(
1 − p1

p2

)
/ ln p2

p1
then:

P (∀u ∈ C, ∀v ∈ C̄ : wuC ≥ wvC) ≥ 1 − n

(
eα−1

αα

)p2q

. (1)

Proof. Let XxC denote the number of links established by x linking to members
in C. Let μ2 = p2 · q denote the expected value for XuC if u ∈ C. The expected
value for XvC for v ∈ C̄ is μ1 = p1 · q.

We will establish an upper bound for the event in (1) not happening:

P (∃u ∈ C, ∃v ∈ C̄ : XuC < XvC) ≤

P (∃u ∈ C : XuC < τ ∨ ∃v ∈ C̄ : XvC > τ) ≤

|C| · P (XuC < τ) + |C̄| · P (XvC > τ) . (2)

where u and v are generic elements in C and C̄ respectively. This upper bound
holds for any value of τ . The strategy of the proof is to find a τ such that the
factors P (XuC < τ) and P (XvC > τ) have a low common upper bound.

We will use two Chernoff bounds and produce upper bounds on the factors
in (2) assuming τ = αμ2 = p2

p1
αμ1 for α ∈ (p1

p2
, 1):

P (XuC < αμ2) ≤ e−μ2

(
eα

αα

)μ2

. (3)

P

(
XvC >

p2

p1
αμ1

)
≤ e−μ1

(
e

p2
p1

α

) p2
p1

αμ1

= e−μ1

(
p1

p2

)αμ2
(

eα

αα

)μ2

. (4)

Now we will find a necessary and sufficient condition for these upper bounds to
be identical:

e−μ2 = e−μ1

(
p1

p2

)αμ2

⇔
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−μ2 = −μ1 + αμ2 ln
p1

p2
⇔

α =
(

1 − p1

p2

)
/ ln

p2

p1
.

The upper bounds in (3) and (4) are identical for this value of α which is easily
shown to satisfy α ∈ (p1

p2
, 1). We will put the common value ( eα−1

αα )μ2 in (2):

P (∃u ∈ C, ∃v ∈ C̄ : XuC < XvC) ≤ n

(
eα−1

αα

)p2q

.

��

Theorem 1 shows that real communities with p2 > p1 probably will obey De-
finition 1 in a large network where the number of links from each vertex is
logarithmically lower bounded as pointed out by the following corollary:

Corollary 1. For fixed p1 and p2 with p1 < p2 there exists a constant k > 0
such that

P (∀u ∈ C, ∀v ∈ C̄ : wuC ≥ wvC) → 1 for n → ∞ .

for q = k · log n.

Before addressing computability issues a couple of remarks on our community
definition are in place. First of all there might be several communities containing
a given set of representatives so picking the representatives might require sev-
eral attempts. The experiments in Sect. 4.1 deal with the problem of choosing
representatives. Secondly the union C = C1 ∪ C2 of two communities C1 and
C2 is not necessarily a community. For example there might be a vertex v ∈ C̄
with wvC = 1 and a vertex u ∈ C with wuC < 1 in which case C would not be
a community since wuC < wvC . Communities in the “real world” seem to share
these properties with our formal communities.

2.2 Intractability

We will now formally define the problem of deciding whether a non trivial com-
munity exists for a given set R:

Definition 2. The COMMUNITY problem:

– Instance: A directed graph G = (V, E) and a set of vertices R ⊂ V .
– Question: Does a community C �= V according to Definition 1 exist such

that R ⊆ C?

If we had an effective algorithm locating a non trivial community if at least one
such community existed then we also could solve COMMUNITY effectively but
even solving COMMUNITY effectively seems hard according to the following
theorem:
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Theorem 2. COMMUNITY is NP complete.

Proof. We can check in polynomial time whether C is a community containing
R by calculating wxC for all x ∈ V thus COMMUNITY is in NP.

We will transform an instance of the NP complete problem PARTITION [7,
page 223] into an equivalent instance of COMMUNITY in polynomial time. This
means that we can solve the NP complete problem PARTITION in polynomial
time if we can solve COMMUNITY in polynomial time thus COMMUNITY is
NP complete since it is a member of NP. The rest of the proof contains the
details of the transformation.

An instance of PARTITION is a finite set A = {a1, a2, . . . , an} and a size
s(ai) ∈ Z+ for each ai ∈ A. The question is whether a subset A′ ⊂ A exists
such that

∑
a∈A′ s(a) = S

2 where S is the sum of the sizes of all elements in A?
We will transform this instance into the instance of COMMUNITY given by a
directed graph G(V, E) with n + 2 vertices and R = {r} where r is one of the
vertices in G. The graph G is constructed in the following way:

We will start with two vertices r and y. For each ai ∈ A we will make a vertex
with two links (ai, r) and (ai, y) with multiplicity 1 and two links (r, ai) and
(y, ai) with multiplicity s(ai). The resulting network is shown on Fig. 1.

a1

r y

s(a1) 1 1
s(a1)

s(a n) s(a n)

1 1

s(a2)
a2

an

1 1

s(a2)

Fig. 1. A non trivial community C with r ∈ C exists if and only it is possible to divide
the set A in two parts with the same size. Each link is labeled with its multiplicity.

Now we will prove that G contains a non trivial community C containing R
if and only if A′ exists.

– If A′ exists then C = {r} ∪A′ is a non trivial community containing r since
wxC = 1

2 for all x ∈ V .
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– Now assume that C is a non trivial community containing r. If C contains
y then C also contains all the a’s since waC = 1 if {r, y} ⊆ C. Since C is a
non trivial community we have y /∈ C. Now set A′ = C ∩ A.
• If

∑
a∈A′ s(a) < S

2 then wrC < 1
2 but there is at least one a /∈ C with

waC = 1
2 contradicting that C is a community.

• If
∑

a∈A′ s(a) > S
2 then wyC > 1

2 but there is at least one a ∈ C with
waC = 1

2 - yet another contradiction.
We can conclude that

∑
a∈A′ s(a) = S

2 . ��

The network in Fig. 1 might be illustrative when comparing the definitions
of a community in this paper and in [6]. If A′ ⊂ A exists such that

∑
a∈A′ s(a)

=
∑

a∈A−A′ s(a) then C = {r} ∪ A′ will not be a community by the definition
in [6] for any value of α.

2.3 A Greedy Approach

Despite the computational intractability experiments show that it is possible
to find communities in the Danish part of the web graph with a simple greedy
approach (see Sect. 4).

The approach starts with C = R. It then moves one element from C̄ to C at
a time choosing the element v ∈ C̄ with the highest value of wvC . After moving
v to C it updates wxC for all x linking to v and checks whether the current C
satisfies Definition 1. The approach can be effectively implemented using two
priority queues containing the elements in C and the elements in C̄ linking to
C respectively using wxC as the key for x. The C-queue is a min-queue and the
C̄-queue is a max-queue. It is possible to find the next element to move and to
decide if C is a community by inspecting the first elements in the queues as can
be seen from the pseudo code of the approach shown in Fig. 2.

The time complexity of the approach is O((nC + mC) log nC) where nc is
the number of elements in the union of the found community C and the set of
vertices linking to C and mC is the number of links between elements in C plus
the number of links to C from C̄ - multiple occurrences of (u, v) ∈ E only counts
as one link. The argument for the complexity is that less than nC elements have
to move between the two queues and that mC update-priority operations are
performed on the two queues containing no more than nC elements. We are
assuming that finding one vertex x linking to v can be done in constant time.

Some of the representatives might have no links, so we do not consider the
attention shown by the representatives to C when we check whether C satisfies
our definition of a community for the experiments in this paper. To be more
specific we check whether

∀u ∈ C − R, ∀v ∈ C̄ : wuC ≥ wvC .

3 Ranking the Members

The PageRank algorithm used by Google can be viewed as a vote among all pages
yielding a global measure of popularity. We will turn this into a vote among the
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Greedy(G, R)
C-queue := ∅
C̄-queue := ∅
forall r ∈ R do

forall x ∈ V − R linking to r do
if x ∈ C̄-queue then

increase the priority of x with wxr

else
insert x in the C̄-queue with priority wxr

while |C-queue| < minimum size or min(C-queue) < max(C̄-queue) do
move the element v with maximum priority from the C̄-queue to the C-queue
forall x ∈ V − R linking to v do

if x ∈ C-queue or x ∈ C̄-queue then
increase the priority of x with wxv

else
insert x in the C̄-queue with priority wxv

Report R ∪ C-queue as a community

Fig. 2. Pseudo code for the greedy approach. Details for handling an empty C-queue
or an empty C̄-queue in the while-loop have been omitted for clarity.

relevant pages that are the pages in C. In this way we will obtain a small math-
ematical model which forms a basis for analyzing the consequences of changes in
the link structure. The experiments carried out produces what we believe to be
very valuable rankings which support the validity of the mathematical models
behind the rankings.

A visitor to a community member i ∈ C is assumed to have the following
behavior:

– With probability given by some number d he decides to follow a link1 from i.
In this case there are two alternatives:
• He decides to visit another member j of C. The probability that j gets

a visit in this way is d · wij .
• He follows a link to a non member v. Assuming a low upper bound on

wvC it is not likely that the visitor will use a link to go back to C. Thus
we treat this case as a jump to another member of C chosen uniformly
at random.

– With probability 1−d he decides to jump to another place without following
a link which is treated as a jump to a member in C chosen uniformly at
random.

A visitor to i ∈ C will visit j ∈ C with probability

pij =
1 − d

|C| +
d(1 − wiC)

|C| + d · wij =
1 − d · wiC

|C| + d · wij .

1 As suggested in [4] we use d = 0.85.
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Like PageRank the ranking of the members is simply the unique stationary
probability distribution of the Markov chain given by the transition matrix
P = {pij}i,j∈C . An iterative calculation of π · P i will converge to the ranking
in a few iterations where π is an arbitrary initial probability distribution. For
details on convergence rates etc. we refer to the work of Langville and Meyer [10].

4 Experimental Work

For an on-line version of the results of the experiments please visit the home page
of the author: www.daimi.au.dk/˜mo/. Besides the results reported in this paper
you can also find results from experiments with the s-t minimum cut approach
from [6].

4.1 Identification of Community Members in Artificial Graphs

Inspired by Newman et al. [11] we test the greedy approach on some random
computer generated graphs with known community structure. The graphs con-
tain 128 vertices divided into four groups with 32 vertices each with vertices
1 - 32 in the first group, 33 - 64 in the next group etc. We will denote the first
of the four groups as group 1. For each pair of vertices u and v either two links -
(u, v) and (v, u) - or none are added to the graph. The pairs of links are placed
independently at random such that the expected number of links from a vertex
to vertices in the same group is 9 and the expected number of links to vertices
outside the group is 7.

For 10 graphs the greedy approach reported the first community found con-
taining at least 32 members with vertex number 1 as the single representative.
The average size of the community found was 64.3 and the average number of
vertices from group 1 in the community found was 28.9. If we use vertices 1 to 5
as representatives instead the corresponding numbers are 39.3 and 31.3 and if we
use vertices 1 to 10 as representatives the numbers are 32.4 and 31.2. These ad-
mittedly few experiments suggest that the greedy approach can actually identify
members of communities if the number of representatives is sufficient.

4.2 Identification and Ranking of Danish Computer Science Sites

Now we will demonstrate that the greedy approach is able to identify commu-
nities in the web graph using only a few representatives. A crawl of the Danish
part of the web graph from April 2005 was used as the basis for the web exper-
iments. In the first experiment reported in this paper V consists of the 180468
sites in the crawl where a link from site u to v is represented by (u, v) ∈ E.

The objective of the experiment was to identify and rank Danish Computer
Science sites. The following four sites were used as representatives:

– www.itu.dk, IT University of Copenhagen
– www.cs.auc.dk, Department of Computer Science, University of Aalborg
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Table 1. The Top 20 of two communities of Danish Computer Science sites. Repre-
sentatives are written with bold font. The numbers after a site is the “global” ranking
in the dk domain.

556 members 1460 members
1 www.daimi.au.dk 267 www.au.dk 109

2 www.diku.dk 655 www.sdu.dk 108

3 www.itu.dk 918 www.daimi.au.dk 267

4 www.cs.auc.dk 1022 www.hum.au.dk 221

5 www.brics.dk 1132 www.diku.dk 655

6 www.imm.dtu.dk 1124 www.ifa.au.dk 681

7 www.dina.kvl.dk 1153 www.itu.dk 918

8 www.agrsci.dk 1219 www.ruc.dk 945

9 www.foejo.dk 1504 www.phys.au.dk 1051

10 www.darcof.dk 2113 www.brics.dk 1132

11 www.it-c.dk 2313 www.cs.auc.dk 1022

12 www.dina.dk 2169 www.dina.kvl.dk 1153

13 www.cs.aau.dk 2010 www.imm.dtu.dk 1124

14 rapwap.razor.dk 4585 www.agrsci.dk 1219

15 imv.au.dk 2121 www.kvinfo.dk 1122

16 razor.dk 2990 www.foejo.dk 1504

17 www.imada.sdu.dk 2998 www.bsd-dk.dk 1895

18 www.plbio.kvl.dk 3543 www.humaniora.sdu.dk 1826

19 www.math.ku.dk 2634 www.imv.au.dk 2121

20 mahjong.dk 3813 www.statsbiblioteket.dk 867

– www.imm.dtu.dk, Department of Informatics and Mathematical Model-
ing, Technical University of Denmark

– www.imada.sdu.dk, Department of Mathematics and Computer Science,
University of Southern Denmark

The sites of the Departments of Computer Science for the two biggest univer-
sities in Denmark, www.diku.dk and www.daimi.au.dk, were not included in
the set of representatives. These sites represent the universities in Copenhagen
and Aarhus respectively.

The greedy approach found several communities. The Top 20 ranking of two
communities with 556 and 1460 sites respectively are shown in Table 1 which
also shows the ranking produced by a PageRank calculation on the dk domain.
Members of both communities use more than 15-16% of their links to other
members and non members use less than 15-16% on members.

The Top 20 lists contain mainly academic sites and the smaller community
seems to be dominated by sites related to Computer Science. The ranking seems
to reflect the “sizes” of the corresponding real world entities. It is worth noting
that www.daimi.au.dk and www.diku.dk are ranked 1 and 2 in the smaller
community. The site ranked 5 in the smaller community represents BRICS, Basic
Research in Computer Science, which is an international PhD school within the
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areas of computer and information sciences, hosted by the Universities of Aarhus
and Aalborg.

The larger community seems to be a more general academic community with
the sites for University of Aarhus and University of Southern Denmark ranked
1 and 2 respectively. The larger community obviously contains the smaller com-
munity by the nature of the greedy approach.

The local ranking seems to reflect the global ranking with a few exceptions.
The site rapwap.razor.dk is popular among the relevant sites but seems not to
be that popular overall. The person behind rapwap.razor.dk has pages in Top
5 on Google searches2 for Danish pages on “cygwin” and “php” which justifies
rapwap.razor.dk’s place on the Top 20 list of Danish Computer Science sites.

4.3 Identification and Ranking of Danish Chess Pages

We also carried out an experiment at the page level in order to rank Danish
Chess pages using one representative only: www.dsu.dk, the homepage for the
Danish Chess Federation. For this experiment V consisted of all pages up to three
inter site links away from the representative where the links were considered
unoriented. V contains approximately 330.000 pages. The weight wuv is the
fraction of inter site links on page u linking to page v.

The greedy approach located a community with 471 members. All members
use at least 1.4% of their inter site links on members and non members use less
than 1.4% on members. This means that only heavily linked non members link
to the pages in the community and if they do they only link to the community
with a few links. The Top 20 for this experiment – using the ranking from Sect. 3
– is shown in Table 2.

The page ranked 2 in the Top 20 is a page for a chess tournament held in
Denmark in 2003 with several Grandmasters competing. The pages ranked 13
and 20 are pages (at that time) for the Danish and Scandinavian Chess champi-
onships respectively. Several of the subdivisions of the Danish Chess Federation
(4, 7, 9, 19) are represented on the Top 20 and the page ranked 6 provides access
to a database of more than 40.000 Chess games3. Most of the rest of the pages
on the Top 20 are Chess Club pages. All in all the Top 20 seems useful from a
Danish chess players point of view.

For comparison we searched Google4 for Danish pages containing the word
“skak” – the Danish word for chess. Several of the sites with pages in the Top 20
from Table 2 are also present in the Google search result but the latter seems
targeted at a broader chess audience. The Google Top 20 contains for example
several pages dealing with on-line chess and chess programs. The Top 20 from
Table 2 seems to be targeted at a dedicated Danish chess player being a member
of a chess club.

2 The searches were carried out on January 23 2007.
3 Appear to have moved to http://dsu9604.dsu.dk/partier/danbase.htm.
4 The searches were carried out on April 12 2007.
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Table 2. The top 20 of a community of 471 Danish chess pages found with the home-
page of the Danish Chess Federation as a representative (written with bold font). The
Danish word for chess is “skak”.

1. www.dsu.dk
2. www.sis-mh-masters.dk

3. dsus.dk

4. www.8-hk.dk

5. www.dsus.dk

6. www.dsu.dk/partier/danbase.htm

7. www.vikingskak.dk/4hk

8. www.sk1968.dk

9. www.4hk.dk

10. www.skovlundeskakklub.dk

11. www.vikingskak.dk

12. www.alssundskak.dk

13. www.skak-dm.dk

14. www.frederikssundskakklub.dk

15. www.birkeskak.dk

16. home13.inet.tele.dk/dianalun

17. www.rpiil.dk/nvf

18. www.enpassant.dk/chess/index.html

19. www.4hk.dk/index.htm

20. www.skak-nm.dk
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Abstract. Users typically locate useful Web pages by querying a search
engine. However, today’s search engines are seriously threatened by ma-
licious spam pages that attempt to subvert the unbiased searching and
ranking services provided by the engines. Given the large fraction of
Web traffic originating from search engine referrals and the high poten-
tial monetary value of this traffic, it is not surprising that some Web
site owners try to influence the ranking function of a search engine in a
malicious way, thus giving rise to Web spam. Since the algorithmic iden-
tification of spam is very difficult, most techniques require either some
human assistance or extensive training to effectively deal with spam. We
exploit the possibility of automatically reducing Web spam page in a
Web collection by analyzing the Web graph, coupled with very simple
content analysis. We present empirical evaluation of our approach on 1
million Web pages from the health domain. Our results clearly indicate
that we can effectively filter out a significant fraction of Web spam pages.

1 Introduction

Search engines employ about 100 different features in the final ranking function of
search results. These features can be grouped into two major categories: content-
based features and link-based features. Many of the content-based features are
used in the online ranking component to determine the relevancy of a Web page
to a user query. Link-based features, on the other hand, are typically used in the
offline ranking component to determine the overall quality of a page independent
of a query.

Search engine optimization (SEO) is an IT industry that improves the struc-
ture, content, and presentation of Web sites to allow them to be better indexed
and ranked by search engines. The intentions behind SEO techniques are legiti-
mate: the goal is to facilitate locating relevant content to the end user.

Spamdexing1 is an activity that attempts to artificially manipulate a page’s
ranking in a search engine [18]. The consequences of spamdexing with respect
to a search engine can be detrimental. First, since there are financial advantages
to be gained from search engine referrals, spam pages deprive legitimate Web

1 The word spamdexing is a portmanteau of spamming and indexing.
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sites of the revenue. Secondly, they considerably deteriorate the quality of search
engines by returning irrelevant results to the end user. As a result, search engines
end up wasting a significant amount of their resources.

In this work, we exploit the possibility of automatically reducing spam docu-
ments by analyzing the Web graph, coupled with very simple content analysis.
After presenting related work in Sec. 2 and reviewing essential related concepts
in Sec. 3, we describe several simple and effective techniques for combating link-
spam in Sec. 4. Section 5 details the evaluation and experimental setup and
Sec. 6 presents and discusses the empirical results. We conclude the discussion
in Sec. 7 and give our short and long-term future work directions.

2 Related Work

The earliest reference to using the term spamdexing is an article by Convey
in 1996 [5]. At that time, most spamdexing was content based and tried to
maliciously alter the content of a page to make it relevant for some queries.
PageRank [14] was one of the first algorithm that used the Web graph to rank
Web pages. PageRank tried to rank Web documents by assigning each document
a global objective importance. Thus, it helped reduce content spam by empha-
sizing the importance of the link structure of the Web in ranking Web pages.
However, it also opened the door to a new set of Web spamming techniques—
link spam. Since there is no objective definition of spam, detecting link spammed
pages is a difficult task. Moreover, pages participating in a link spam use more
sophisticated techniques than content spamming making identifying these pages
a nontrivial task.

Commercial search engines rarely reveal their anti-spam strategies. Literature
on combating Web spam comes mostly from speculation by the SEO commu-
nity [4,16] or from academic events. The International Workshop on Adversarial
Information Retrieval on the Web was started in 2005 to bring together acad-
emics and practitioners interested in spamdexing.

There have been several attempts to classify Web spam, differing in the criteria
and the level of details [9,18,4]. The popularity and effectiveness of these tech-
niques rapidly changes as search engines devise new ways to combat spamdexing,
while Web spammer devise new ways to exploit search engines.

A number of algorithms extend, modify, or complement PageRank to im-
prove the ranking quality while reducing the rank of spam pages. For instance,
Benczur [2] analyzed the distribution of PageRank scores of incoming links to
identify spam page; Drost [6] applied machine learning to the spamdexing prob-
lem; Gyongyi [10] investigated the propagation of trust ranks from a manually
selected good seed set, while Krishnan [11] looked at propagating anti-trust ranks
from a spam seed set; and Wu [20] extended the trust rank idea to include topic
information about the web pages. Other works focus on identifying features of
a Web page that can differentiate spam pages from legitimate ones (a.k.a. ham
pages) [13,17,19]. Another category of works analyzes link-spam strategies, their
impact on PageRank, and their overall effectiveness [1,8].
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3 Background

GenieKnows.com is developing a specialized search engine for the health do-
main2. Results are ranked by combining content and link-related features. In
this work, we describe our efforts at reducing spamdexing from the top search
results. We focus our discussion on combating link spam, although some tech-
niques apply to content spamming as well.

3.1 PageRank

In this section we briefly discuss the PageRank [14] algorithm as the approach
adopted by us primarily relies on PageRank. PageRank uses the link structure
of the Web to assign a global importance score to all pages. The basic intuition
behind PageRank is that a Web page is deemed important if other important
Web pages point to it. Correspondingly, PageRank is based on a mutual re-
inforcement between pages; the importance of a certain page influences and is
being influenced by the importance of other page.

The original summation-based definition is rarely used in the actual compu-
tation of PageRank. Instead, the following matrix definition is more common

PR = αS + (1 − α)E

where PR is the PageRank vector, α ∈ [0, 1] is a scaling factor that controls the
relative importance of following a link vs. teleporting to a random page, S is a
sparse, stochastic matrix that represents the link structure of the Web pages,
and E is a teleportation vector (a.k.a. the personalization vector) [12].

3.2 Link Spamming

Link spam takes advantage of the link based ranking algorithms, such as PageR-
ank, by artificially creating extraneous and often misleading links to boost the
importance of one or more pages. Some common link spamming techniques are
described below.

Link Farm. By creating tightly-knit communities (link farms) of Web pages
referencing each other, the rank of each page in the farm is increased, and
can be used to boost the ranking of a external target page.

Hidden Links. Strategically placing links where visitors will not be able to see
them, thus increasing their hub score and boosting the ranks of the unrelated
destination pages.

Honey Pots. In order to accumulate a number of incoming links to a single
target page or a set of pages, spammers often create a set of pages that
provide some useful resource (e.g., copies of Unix documentation pages),
but that also have hidden links to some target pages. Most of the content
in honey pots are usually copied of some other useful Web sites. The honey
pot then attracts people to point to it, boosting indirectly the ranking of the
target pages.

2 Specialized search is often known by the name vertical search or focused search.
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Buying Expired Domains. Some link spammers monitor DNS records for do-
mains that will expire soon, then buy them when they expire and replace
the pages with links to their own pages, thus taking the advantage of the
false importance conveyed by the pool of old links.

Comment Spamming. Many Web sites have a field where anyone can post a
comment (e.g. discussion boards, Wikis, and blogs); these sites usually do
not ask for authentication to leave a comment. Spammers tend to post the
URLs of their own Web sites thus getting an in-link from a good page. This
kind of links defeat the purpose of PageRank and other link-based ranking
algorithms, as this link is by no means a vote towards the spam site by the
blog owner.

4 Combating Spamdexing

Since the algorithmic identification of spam is very difficult, most techniques
significant manual effort or extensive training to efficiently deal with spamdex-
ing. Our approaches minimizes the manual component by incorporating simple
heuristics in link-based ranking to combat spamdexing.

We start with cleaning up the link graph. Next, we identify a core set of
spamdexing pages. This set is further extended to include other likely spam
pages. Finally, we use a biased PageRank-based ranking algorithm to produce
the final off-line scores. The overall flow of our approach is depicted in Fig. 1.
We discuss each of the stages below.

Fig. 1. The overall flow of our approach to combating spamdexing
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4.1 Cleaning the Link Graph

We clean the entire link graph by removing all bi-directional links between do-
main names (as opposed to Web pages). Additionally, we remove all internal
links: links whose source and destination domain names or IP addresses are the
same. Consequently, The presence of tightly-connected link farms and affiliated
links are greatly reduced.

4.2 Core Set Identification

We use simple heuristics to identify a core set of Web spam pages. Domain
patterns define common patterns of domain names that have high precision in
identifying spam pages, such as *.biz, *.info, and *.pl. In [13] the authors re-
port that 70% of all pages from *.biz domain to be spam. Certain domain names
like *.biz, *.info, *.pl, *.us are easily available at a very cheap price, thus
making them target for spammers. Domain Term Count marks as spam all pages
whose domain names contain more than 5 terms; e.g., union-planters-bank.
rbec-surf.skThe main motivation behind URL spamming is that many search
engines pay special attention to words in host names and give these words a
higher weight than if they occurred anywhere else in the Web page. Fetterly
et. al. [7] observe that host names with many characters,dots and dashes are
likely to be spam sites, which further validates our observation. Note that the
domain patterns and the domain term count computations are highly scalable
and inexpensive.

4.3 Spamdexing Extension

Next we extend the core Web-spam set using the Spam Propagation algorithm
(Fig. 3). This algorithm is similar in its ideology to BadRank [16,19]. It starts
with the core set, and at each iteration, it adds to the core set all pages that
have links to a page in the core set. The process is repeated until the core set
stabilizes. Hence, the spamness of a page is back-propagated to all pages that
link to it, effectively capturing spam pages that are linked to the core set, but
did not trigger the heuristic rules. Castillo et. al. [3] provide empirical evidence
of the topological dependencies of spam pages. They show that non-spam pages
tend to be linked by very few spam pages and usually link to non spam pages,
while spam pages are mainly linked by spam pages. Figure 2 gives a graphical
representation of how spamdexing extension works.

It is important to note that the Spam Propagation algorithm cannot be used
to rank pages or sort them in any order. It is simply an attempt to detect pages
which are possibly part of a link farm. As the algorithm iteratively detects spam
pages by analyzing the in-links of a document, we might punish some legitimate
pages that are victims of comment spam. One possible improvement for the Spam
Propagation algorithm, would be to use a less strict penalty for the parent pages.
We can use the Parent Penalty algorithm [19], where they use a threshold of 3
spam pages for propagation of the spam score.

*.biz
*.info
*.pl
*.biz
*.biz
*.info
*.pl
*.us
file:union-planters-bank.rbec-surf.sk
file:union-planters-bank.rbec-surf.sk
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Fig. 2. Extending the core spam set. Nodes ai and ci are spam pages in the core set,
di are pages identified as spam during spam propagation, and bi, ei, and fi are pages
that are treated as ham.

function SpamPropagation(C : core spam set )
begin
S := C
for each a ∈ S do

for each b ∈ {p : p → a} do
S := S ∪ {b}

return S
end

Fig. 3. Spam Propagation Algorithm

4.4 Biased Ranking

We remove all pages in the extended core set from the link graph, along with
their in and out links. We manually select 100 non-spam pages from the vanilla
PageRank ranking and favourably bias their initial rank proportionally to their
PageRank ranking. We further uniformly bias all .gov and .edu pages under

.gov
.edu
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the assumption that a random page from these domains is less likely to point to
a spam page than a random page from other domains.

Our biased ranking approach is similar to the TrustRank [10] algorithm in
terms of selecting a seed set of good pages and using it to propagate the scores
to the rest of the graph. However, in the TrustRank algorithm, uniform weights
are assigned to all the documents in the seed set, and zero weights otherwise. In
our biased rank, on the other hand, nonuniform weights are assigned to the seed
set, proportional to their precomputed PageRank. We also assigned pages not
classified under either of the two categories (extended spam set and good seed
set) some initial weight, this was done to reduce the dominance of the .edu and
.gov pages, and give advantage to the unclassified pages over the ones classified
as spam. Moreover if we only propagate the weight from the seed set, some good
quality pages that are not well connected to the seed set will be demoted. Pages
classified as spam were assigned a zero weight. We compute the biased rank
scores using 20 iterations and a scaling factor of 0.9.

5 Evaluation

We evaluate our methodology by a manual classification of 100 page samples
from a Web page collection of 1 million pages from the health domain. The
numbers reported represent precision only; calculating the recall measure would
require a classification of the entire collection. Where appropriate, the sample is
the top 100 ranked pages. Our testing corpus consists of 1 million pages collected
from the health domain using our proprietary focused crawler.

We compute the accuracy of our three heuristics, domain patterns, domain
term count, and spamdexing extension, in identifying spam pages. First, we
apply each of the heuristic to the entire collection. Then, we selected a random
sample of 100 pages. We manually inspect the pages in the sample and label
them as spam or ham. Since there is no objective definition of spam, we followed
the guidelines used in creating the WEBSPAM-UK2006 collection [15] for the
evaluation. The percentage of the spam pages in the sample is the estimated
accuracy of the heuristic.

We devise the link-based ranks of the Web pages in the collection using three
ranking algorithms:

1. Vanilla PageRank—the PageRank algorithm is applied to the original, un-
processed collection;

2. Clean PageRank—the PageRank algorithm is applied to a “cleaned” collec-
tion where all the internal and bi-directional links are removed; and

3. Biased Ranking—the personalization vector in the PageRank algorithm is
modified from being a uniform vector to a vector that is biased positively
towards pages in the seed set (pages belonging to .edu and .gov domains)
proportional to their Vanilla PageRank scores, negatively towards pages in
the extended spam set, and neutral towards unclassified pages. The biased
ranking algorithm is applied to the cleaned collection.
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6 Experimental Results

The evaluation results are summarized in Table 1 and described below.

Table 1. Summary of Experimental Results

Algorithm Spam Ham Accuracy Comments

Vanilla PageRank 42% 58% - Top 100 pages
Domain Patterns - - 100% Random sample of 100 pages
Domain Term Count - - 97% Random sample of 100 pages
Spamdexing Extension - - 87% Random sample of 100 pages
Clean PageRank 37% 63% - Top 100 pages
Biased Ranking 9% 91% - Top 100 pages

Vanilla PageRank, which does not include any of the methods discussed in
section 4, contains about 42% of spam and 58% of ham pages. This is the base-
line algorithm. The high percentage of spam pages in the top ranked documents
renders the vanilla PageRank algorithm ineffective. In TrustRank [10], it is sug-
gested to use the top ranked pages in page rank as the seed set for the TrustRank.
Our finding show that this approach will not work with a collection like ours
because a lot of high-ranked pages are spam.

Domain patterns heuristic have accuracy of 100% using a random sample,
while the domain term count heuristic has accuracy of 97%, giving only 3% of
false positives. The simplicity and high accuracy of these two heuristics makes
them excellent candidates for identifying the core spam set. They are effec-
tive and efficient techniques that can be used to reduce spam in health Web
pages.

Spamdexing extension has accuracy of 87%, giving 13% of false positives.
Although the accuracy is not as high as in the previous two techniques, it is still
sufficiently high to be useful. An examination of the false positives reveals that
most of them are user-contributed online content (such as blogs, forums, and
comments) that have been subjected to comment spam.

Clean PageRank is the vanilla PageRank applied to a the clean graph (i.e., bi-
directional and internal links removed). The percentage of spam pages drops to
37%, compared to the baseline vanilla PageRank, reducing the spam by 5%. A 5%
reduction in spam in the top 100 ranked documents is a significant improvement.
Although some legitimate link may be removed during the cleaning process, the
impact on spam pages is a lot more dramatic than on ham pages, which justifies
removing the bi-directional and internal links.

Biased ranking is result of the final ranking stage. Only 9% of the top 100
pages are spam, giving a striking reduction of 33% over the baseline, and 28%
over the clean PageRank. Note that although the algorithm is initially biased to
favour pages from the .edu and .gov domains, only 10 pages from these domains
appear in the top 100 pages.
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7 Conclusion and Future Work

We present several simple and effective techniques to identify spam sites. We
dramatically reduce the number of spam pages from the top ranked pages in
PageRank without any significant increase in the computation complexity. We
present an empirical evaluation of our approach on 1 million Web pages from
the health domain. We were able to reduce the number of web spam pages in
the top 100 ranked pages by 33% over the baseline PageRank.

The three heuristics presented, domain patterns, domain term count, and the
spam propagation algorithm, are effective and efficient methods in reducing web
spam. When combined with cleaning of the Web graph and a biased ranking
algorithm, spam can be reduced by a significant factor.

We recognize that the presence of 9% spam in the top results after the biased
ranking is still an alarming case. The methods presented in this paper act as first
steps in combating spamdexing, but are insufficient by themselves in eliminating,
or nearly eliminating spam pages from a collection.

Our short-term plans include evaluating this approach on a corpus of 20
million Web pages, incorporating other content-based heuristics to define the
spamdexing core set, and revise the Biased Ranking algorithm to reduce the
number of false positives.

Our long-term plans include combining other techniques for combating
spamdexing such as detection of duplicate and near duplicate pages, link-farms,
Topical PageRank, and the HITS hub-authority algorithm.
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9. Gyöngyi, Z., Garcia-Molina, H.: Web spam taxonomy. In: Proceedings of AIRWeb
(2005)
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Abstract. We discuss a number of issues in the definition, computation and com-
parison of PageRank values that have been addressed sparsely in the literature, of-
ten with contradictory approaches. We study the difference between weakly and
strongly preferential PageRank, which patch the dangling nodes with different
distributions, extending analytical formulae known for the strongly preferential
case, and corroborating our results with experiments on a snapshot of 100 mil-
lions of pages of the .uk domain. The experiments show that the two PageR-
ank versions are poorly correlated, and results about each one cannot be blindly
applied to the other; moreover, our computations highlight some new concerns
about the usage of exchange-based correlation indices (such as Kendall’s τ ) on
approximated rankings.

1 Introduction

This paper started with an attempt to reproduce the correlation data published by Haveli-
wala [1] about rankings biased towards different topics (where the correlation was com-
puted using a measure similar to Kendall’s τ ); such seminal work has been receiving
some attention lately, as in [2,3]. The bias was introduced using a preference vector, that
is, by assuming that upon teleportation (see below for definitions) one does not land in
a node chosen uniformly at random, but rather according to a given distribution.

During our attempts, we met significant difficulties due to the number of different
ways in which PageRank can be defined and computed, and to the lack of public data
over which to replicate the experiments. Following the incongruences in the literature,
we were led to study in great detail the way in which PageRank depends on the pref-
erence vector and on the way dangling nodes are patched to obtain the final Markov
chain. Also the way in which correlation indices are computed, and their depencence
on the precision of the computation, turned out to be decisive.

We report the results obtained along our way. All our experiments use publicly avail-
able data gathered by UbiCrawler [4] on the .uk domain in the context of the EU
project DELIS [5]. The topic-bias data we use are derived from the ODP [6] hierar-
chy. We believe such a public, well-defined data set is essential to continue research on
personalised (and, in particular, topic-based) ranking.

First of all, we provide analytical formulae for weakly preferential and strongly pref-
erential PageRank—two variants frequently found in the literature in which different
distributions are used to patch dangling nodes. Using the Sherman–Morrison formula

∗ This work is partially supported by the EC Project DELIS and by MIUR PRIN Project “Automi
e linguaggi formali: aspetti matematici e applicativi”.

W. Aiello et al. (Eds.): WAW 2006, LNCS 4936, pp. 107–116, 2008.
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we are able to extend the results of Del Corso, Gullı̀ and Romani [7] for strongly prefer-
ential PageRank. In doing so, we introduce the notion of pseudorank, a vector obtained
using a PageRank-like matrix (which is not necessarily stochastic). Pseudoranks sim-
plify greatly the following discussion, and present some interesting phenomena.

Then, we report experiments showing that weakly and strongly preferential PageR-
ank can be very poorly correlated, and that results in the literature obtained using the
two approaches are hardly comparable. In doing so, we use a low-level truncation tech-
nique that avoids the usual (and usually neglected in the literature) noise associated
with the result of an interrupted iterative process, and we conclude by showing exper-
imentally that such a noise may have a great impact on the computation of rank-based
correlation indices.

2 PageRank

Albeit definitions of PageRank can be easily found in the literature, our purpose is
precisely that of clarifying some relevant differences, so we start from scratch. Given
a (web) graph G, the row-normalised matrix of G is the matrix P such that pi j is one
over the outdegree of i if there is an arc from i to j in G, zero otherwise. Note that in
general P will not be stochastic, as it can have rows entirely made of zeroes.

Let us define d as the characteristic vector1 of the dangling nodes (i.e., the vector
with 1 in positions corresponding to nodes without outgoing arcs and 0 elsewhere).
Let v and u be distributions2, which we will call the preference and the dangling-node
distribution.

PageRank r is defined (up to a scalar) by the eigenvector equation

rT (
α(P + duT ) + (1 − α)1vT ) = rT ,

that is, as the stationary state of the Markov chain α(P + duT ) + (1 − α)1vT . More
precisely, we have a Markov chain with restart [8] in which P + duT is the Markov
chain (that follows the natural random walk on non-dangling nodes, and moves to a
node at random with distribution u when starting from a dangling node) and v is the
restart vector. The damping factor α ∈ [0 . . 1) decides how often the Markov chain
follows the graph, and how often it moves at a random node following the preference
vector v. The latter behaviour is commonly called teleportation, referring to a well-
known random-walk metaphore in which a random surfer with probability α moves
along an outlink chosen uniformly at random (or, in case of a dangling node, chosen
among all nodes according to distribution u), and teleports to a random node chosen
with distribution v with probability 1 − α. In the random-surfer metaphore, PageRank
is the average fraction of time the surfer spends at a given node.

3 Strongly vs. Weakly Preferential

A significant amount of recent research is devoted to studying the dependence of
PageRank on the preference vector. The preference vector biases the rank towards nodes

1 All vectors in this work are column vectors.
2 By distribution we mean a vector with non-negative entries and �1-norm equal to 1.
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that are closer to nodes with a larger value in the preference vector. The preference vec-
tor, for instance, might depend on the user’s preferences, in which case one speaks of
personalised PageRank [2].

Clearly, the preference vector v significantly conditions PageRank. Some care must
be exercised, however: real-world snapshots comprise a significant percentage of dan-
gling nodes (nodes without outlinks), in particular if the graph contains the whole fron-
tier of the crawl [9], rather than just the visited nodes. Hence, the way in which the
surfer chooses the next node when she is at a dangling node (i.e., the choice of u) is
also very relevant, and it is an issue resolved in different ways by different authors.

We distinguish clearly between strongly preferential PageRank, in which the pref-
erence and dangling-node distributions are identical (i.e., u = v), and correspond to a
topic or personalisation bias, and weakly preferential PageRank, in which the prefer-
ence and the dangling-node distributions are not identical, and, in principle, uncorre-
lated (most commonly, u = 1/n). As we shall see, the distinction is not irrelevant, as
the correlation between weakly and strongly preferential PageRank can be quite low.

As a first analytical step to understand fully the relationship between preference and
dangling-node distributions we extend the closed formula given by Del Corso, Gullı̀
and Romani [7] for strongly preferential PageRank to a general formula that applies
also to weakly preferential PageRank. Using this formula, any biased, weakly prefer-
ential PageRank vector whose distributions are a linear combination of a set of base
vectors [2] can be computed using the pseudorank vectors associated to the base vec-
tors. The computation of a pseudorank vector requires the same amount of computa-
tional effort as for computing PageRank, but once pseudoranks have been computed it
is immediate to compute and compare several different biased ranks.3

PageRank r is defined (up to a scalar) by the eigenvector equation

rT (
α(P + duT ) + (1 − α)1vT ) = rT .

After a transposition, imposing rT 1 = 1 and solving for r , we obtain the standard
closed form

r = (1 − α)
(
I − αPT − αudT )−1

v.

The interesting point of this form is that it exhibits PageRank as a linear operator on
the preference vector v.

Definition 1. Let P be a row-normalised web-graph matrix. The pseudorank of P with
preference vector v and damping factor α ∈ [0 . . 1] is defined as

ṽ(α) = (1 − α)
(
I − αPT )−1

v.

We note by passing that if d = 0 (equivalently, if P is stochastic) then ṽ(α) is actually
the PageRank.4

The above definition can be extended by continuity to α = 1, albeit the fact is not
trivial. The resolvent of a matrix M is the linear operator R(μ, M) = (μI − M)−1,

3 Actually, some papers, such as [3], use tacitly pseudoranks as the definition of PageRank.
4 The condition number in the computation of pseudoranks is the same as or better than that for

PageRank, and there is no increase of computation time.
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defined for every μ which is not an eigenvalue of M; it can be expanded into a Laurent
series around every eigenvalue of M [10,11]. In particular, the expansion around 1 is

R(μ, M) = M∗

μ − 1
+

∞∑

k=0

(μ − 1)k Qk+1

for a suitable matrix Q, where M∗ is the Cesáro limit

M∗ = lim
n→∞

1

n

n−1∑

k=0

Mk ,

which is always defined and is equal to limk→∞ Mk whenever the latter is defined [12].
This implies that

lim
μ→1+(1 − μ)R(μ, M) = M∗,

so the pseudorank for α → 1 is simply (P∗)T v.

Theorem 1. Let P the row-normalised matrix of a web graph, v the preference vector,
u the dangling distribution and α the damping factor. Then, the PageRank vector r
satisfies

r = ṽ(α) − ũ(α)
dT ṽ(α)

1 − 1
α

+ dT ũ(α)
.

Proof. Let ũ(α) and ṽ(α) be the pseudoranks of u and v, and define R = I − αPT . By
the Sherman–Morrison formula [7], we have

r = (1 − α)(R − αudT )−1v = (1 − α)R−1v + (1 − α)
R−1udT R−1

1
α

− dT R−1u
v =

= ṽ(α) + ũ(α)dT ṽ(α)

1
α

− 1 − dT ũ(α)
.

Note that the scalar values dT ṽ(α) and dT ũ(α) have two very simple interpretation—
they are the pseudorank accumulated by dangling nodes w.r.t. v and u, respectively.

By properly ordering multiplications, no matrix computation is necessary to compute
the formula above. When u = v, the formula reduces to the one provided in [7]:5

r = ṽ(α)

(

1 − dT ṽ(α)

1 − 1
α

+ dT ṽ(α)

)

(1)

and the (rather surprising) consequence is that pseudoranks are just multiples of strongly
preferential ranks. In other words, PageRank might as well be computed without taking
care of dangling nodes by using the standard expansion

ṽ(α) = (1 − α)
(
I − αPT )−1

v = (1 − α)

∞∑

n=0

αn(
PT )n

v.

5 The reader should note that our formula has some difference in signs w.r.t. the original paper,
where it was calculated incorrectly.
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Indeed, by truncating the infinite sum we obtain an approximation of the pseudorank:

∥
∥∥
∥ṽ(α) − (1 − α)

k∑

n=0

αn(
PT )n

v

∥
∥∥
∥ =

∥
∥∥
∥(1 − α)

∞∑

n=k+1

αn(
PT )n

v

∥
∥∥
∥ ≤ αk+1.

The fact that the above formula approximates well PageRank up to a constant fac-
tor shows that actually PageRank is related more to a diffusion than to a mixing phe-
nomenon. In other words, even if the PageRank definition is in term of Markov chains,
its value can be computed also by a cumulative process in which the preference vector
is broadcast to the neighbours using a decay factor α.

Pseudoranks are computed from their preference vector using a linear operator: as a
consequence, both weakly and strongly preferential PageRank are quickly computable
if, for instance, ẽi (α) is known for some base ei of the vector space. This property is
noted in [2] for strongly preferential PageRank, but Theorem 1 shows that the statement
is true also in the weakly preferential case, albeit the dependence on u is not linear,
so weakly preferential PageRank vectors do not obey the simple linear laws for what
matters the dangling node distribution.

3.1 A Worked Example, and Some Observations

Let us consider the simple example of a graph with two nodes, and a single arc going
from the first to the second node. With an arbitrary norm-one vector x = (x, 1 − x)T

we have

x̃(α) = (1 − α)(I − αPT )−1x =
(

(α − 1)x
(1 − α)(1 + (α − 1)x)

)
,

and dT x̃(α) = (α−1)x . Note that, for every preference vector v, limα→1− dT ṽ(α) = 0,
and this is not by chance: dT ṽ(α) has a limit as α → 1 because it is a rational function
of α, and looking at (1) it is clear that dT ṽ(α) cannot converge to any limit different
from 0, or otherwise the strongly preferential PageRank would itself converge to the
zero vector.

To complete the example, for two arbitrary norm-one vectors v = (v, 1 − v)T and
u = (u, 1−u)T we have that the denominator in Theorem 1 evaluates to (α−1)(1/α+
u), giving

r = 1

αu + 1

(
v + α(u − v)

(α − 1)v + 1

)
.

The limit when α approaches 1 is

lim
α→1− r = 1

1 + u

(
1
u

)
.

A precise estimate of the difference between strongly and weakly preferential PageRank
can be obtained by considering the difference r1 − r2 between the rank values of the
two nodes:

r1 − r2 = 2(1 − α)v + αu − 1

αu + 1
;
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a contour plot of this difference for the strongly preferential and weakly preferential
cases (as a function of α and v) is given in Figure 1: note that the behaviours in the two
cases are significantly different, in particular when α > 0.5 (an area that is quite impor-
tant, since α = .85 is the value that is customarily adopted for PageRank computation).

Fig. 1. The contour plot of r1 − r2 for the strongly preferential (left) and weakly preferential
(right) case for the worked example

4 Experiments

Is the difference between strongly and weakly preferential significant also when only
ranks are considered instead of rank values? To answer this question, we ran a number
of experiments on a crawl of about 100 million pages of the .uk domain gathered for
the DELIS project [5]. For comparisons we used Kendall’s τ , a classical nonparametric
correlation index that has recently received much attention within the web community
for its possible applications to rank aggregation [13,14,15,16] and for determining the
convergence speed in the computation of PageRank [17]. Here we follow exactly the
definition given in [16].

In Figure 2 we show the values of Kendall’s τ (in dependence of α) for weakly
and strongly preferential PageRank where the preference distribution is in one case
concentrated on a single node, and in the other case it is uniformly distributed among
the nodes in the Open Directory Project [6] “Business” category. In both cases, u was
set to the uniform distribution. The correlation between the two values is always very
low (except, of course, when α ≈ 0).

The interesting phenomenon is that correlation increases as α increases, whereas
intuition would suggest the opposite behaviour: as α increases, the graph becomes more
relevant, so the structural differences between using v or the uniform distribution to
patch dangling nodes should be more visible.

To understand whether the low correlation is due to topic concentration or to the
number of nonzero entries, in Figure 3 we show the comparison of the same kind of
values calculated on UK-2006 graph using an additional vector obtained by randomly
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Fig. 2. Kendall’s τ between weakly and strongly preferential PageRank computed on the UK-
2005 and UK-2006 graphs using the ODP “business” topic-based preference vector and the
http://dotuk.directory.co.uk/ page-based preference vector
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shuffling the topic-based vector. Our experiments show that the latter exhibits the same
behaviour, but with much higher correlation. In other words, topics matter.

5 More Precision Might End in Less Precision

Weak and strong preference is not the only issue met along our way. Correlation mea-
sures such as Kendall’s τ are based on the number of discordancies among ranks, but
the point that appears to have been completely missed in the literature (including that
previously contributed by the authors [16]) is that the computation of ranks is almost
always the result of interrupting an iterative process (e.g., the power method). The in-
terruption is usually based on a threshold satisfied by the �1 or �2 measure.

As a result, a number of correct digits appearing in the rank values is hard to predict,
as it just depends on the computational process. The abovementioned norms guarantee
on average a certain number of significant digits, but unless the much more demanding
�∞ measure is used, almost no guarantee can be provided for the rank value of a single
node.

In the case several very close values appear in the PageRank vector, the effect of
such an unpredictable precision turns out to be catastrophic, in particular with certain
computational methods (such as Gauss-Seidel). Namely, the value of Kendall’s τ is
strongly influenced by the number of significant digits considered in its computation.

To prove the impact of this observation experimentally, we present data obtained
by working out the strongly preferential PageRank computation in a standard fashion,
using the Gauss-Seidel method, for a certain preference vector. We stopped the com-
putation at different stages, having every time a known (lower bound on the) number
of correct digits in the computed ranks, that we denote by p, and then we computed
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Fig. 4. Values of Kendall’s τ : when rank values are batched using more bits than the number of
significant bits guaranteed by the PageRank computation, the value of τ drops significantly. These
data are determineted from the .uk web graph, using the ODP “adult” topic-based preference
vector, α = .85 and the Gauss-Seidel method. p is the number of correct binary digits, θ is the
number of digits used to determine τ .
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Kendall’s τ using only a limited number of digits in the ranks. To limit the number of
significant digits we used, we turned each floating point-number into its bitwise IEEE
754 representation, and manipulated it directly so to delete all digits beyond a certain
threshold. This procedure, applied with threshold θ , has the effect of batching all values
in the interval [ j2−θ . . ( j + 1)2−θ ), into the value j2−θ . The net effect is that several
rank values that appeared to be discordant because of unpredictable noise in the last
digits are now considered as concordant. (We remark that due to the size of the data we
use, these computations require thousands of hours of CPU time.)

The resulting graphs (an example is presented in Figure 4) are quite surprising: even
the τ of a certain PageRank computed against the same vector, but with a different
precision can go down as low as 0.2. Of course, as far as the computation of τ uses
no more digits than those that are guaranteed to be correct, the correlation is 1, but it
rapidly drops as soon as more digits are considered; in particular, computing τ blindly
(i.e., without any form of batching) can bring essentially to random results. In a slo-
gan: more precision might end in less precision. One must be always careful about the
actual number of significant digits of each rank—using an �∞-measure guaranteeing
the number of digits used in the computation of correlation indices is a safe choice.

More evidence is needed to corroborate the data we present. But already our prelimi-
nary results show that order-based correlation indices must be managed with great care,
and have probably given rise to biased results in the past.
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Abstract. One of the most useful measures of cluster quality is the
modularity of the partition, which measures the difference between the
number of the edges joining vertices from the same cluster and the ex-
pected number of such edges in a random (unstructured) graph. In this
paper we show that the problem of finding a partition maximizing the
modularity of a given graph G can be reduced to a minimum weighted
cut problem on a complete graph with the same vertices as G. We then
show that the resulted minimum cut problem can be efficiently solved
with existing software for graph partitioning and that our algorithm finds
clusterings of a better quality and much faster than the existing cluster-
ing algorithms.

1 Introduction

One way to analyze and understand the information contained in the huge
amount of data available on the WWW and the relationships between the indi-
vidual items is to organize them into ”communities,” maximal groups of related
items. Determining the communities is of great theoretical and practical impor-
tance since they correspond to entities such as collaboration networks, online
social networks, scientific publications or news stories on a given topic, related
commercial items, etc. Communities also arise in other types of networks such
as computer and communication networks (the Internet, ad-hoc networks) and
biological networks (protein interaction networks, genetic networks).

The problem of identifying communities in a network is usually modeled as
a graph clustering (GC) problem, where vertices correspond to individual items
and edges describe relationships. Then the communities correspond to clusters
with a lot of edges between vertices belonging to the same subgraph (called in-
cluster edges) and fewer edges between vertices from different subgraphs (called
between-cluster edges). The GC problem has been intensively studied in the
recent years in relation to its applications in the analysis of networks. Girvan
and Newman propose in [11], [18] algorithms based on the betweenness of the
edges of a graph, a characteristic that measures the number of the shortest paths
in a graph that use any given edge. In [15] Newman describes an algorithm based
on a characteristic of clustering quality called modularity, a measure that takes
� This work has been supported by the Department of Energy under contract W-705-
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into account the number of in-cluster edges and the expected number of such
edges. (We formally define and discuss modularity in more detail in the next
section.) A faster version of the algorithm from [15] was described by Clauset
et al. in [6]. Several algorithms have been proposed based on the eigenvectors of
the graph Laplacian, e.g., [19], [16]. In all previous cases the algorithms reported
in the literature are either not fast enough, or are inaccurate.

In this paper we will describe a new approach for GC that uses our newly dis-
covered relationship between the GC and the minimum weighted cut problems.
The minimum weighted cut (MWC) problem is, given a graph G = (V, E) with
real weights on its edges, find a partition of V such that the set of all edges of G
that join vertices from different sets of the partition, called a cut of the partition,
is of minimum weight. GC looks related to the MWC problems since, in a good
quality clustering, the weight of the edges between different sets of the partition
(the cut) should be small compared to the weight of the edges inside the sets.
But the MWC problem can not be directly applied to solve the GC problem
since it does not take into account the sizes of the subgraphs induced by the
cut (e.g., it is likely that the minimum cut will consist of the edges incident to
a single vertex). There are some minimum cut based clustering algorithms, e.g.,
[9], that use maximum flow computations combined with heuristics, but they
are typically slower than modularity based algorithms, e.g. [6], and, moreover,
they cannot determine the optimal number of clusters and, instead, construct a
hierarchical decomposition of the set of all vertices of the graph.

In this paper we prove that the problem of finding a partition of a graph G
that maximizes the modularity can be reduced to the problem of finding a MWC
of a weighted complete graph on the same set of vertices as G. We then show
that the resulting minimum cut problem can be solved by modifying existing
fast algorithms for graph partitioning. We demonstrate by experiments that our
algorithm has generally a better quality and is much faster than the best existing
GC algorithms.

2 Our Clustering Algorithm

2.1 Graph Clustering as a Minimum Cut Problem

As there is no formal definition of clustering and what the clusters of a given
graph are, in general it is not possible to determine if a certain partition is the
”correct” clustering or which of two alternative partitions of a graph corresponds
to a better clustering. For that reason, researchers have used their intuition to
define measures for cluster quality that can be used for comparing different
partitions of the same graph. One such measure, introduced in [18,17], which
has received considerable attention recently, is the modularity of a graph. Given
an n-vertex m-edge graph G = (V (G), E(G)) and a partition P of V (G) into k
subsets (clusters) V1, . . . , Vk, the modularity Q(P) of P is a number defined as

Q(P) =
1
m

k∑

i=1

(|E(Vi)| − Ex(Vi,G)),
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where E(Vi) is the set of all edges of G with endpoints in Vi and Ex(Vi,G) is the
expected number of such edges in a random graph with a vertex set Vi from a
given random graph distribution G. Q(P) measures the difference between the
number of in-cluster edges and the expected value of that number in a random
(e.g., without cluster structure) graph on the same vertex set. Larger values of
Q(P) correspond to better clusterings.

Having the definition of Q(P), we can formulate the clustering problem as
finding a partition P = {V1 ∪ . . . ∪ Vk} of V (G) such that

k∑

i=1

( |E(Vi)| − Ex(Vi,G)) → max . (1)

Clearly

max
P

{
k∑

i=1

( |E(Vi)| − Ex(Vi,G) )}

= −min
P

{ −
k∑

i=1

( |E(Vi)| − Ex(Vi,G) )}

= −min
P

{ (|E(G)| −
k∑

i=1

|E(Vi)| ) − (|E(G)| −
k∑

i=1

Ex(Vi,G) )}

= −min
P

{ |Cut(P)| − ExCut(P ,G)},

where Cut(P) is defined as the cut of P and ExCut(P ,G) the expected value of
Cut(P) for a random graph from G.

Hence, instead of problem (1), one can address the problem of finding a par-
tition P of G such that

|Cut(P)| − ExCut(P ,G) → min . (2)

The last expression shows that we can solve (1) as a problem of finding a MWC
in a complete graph G′ with a vertex set V (G) and weight weight(i, j) on any
edge (i, j) ∈ E(G′) defined by

weight(i, j) =
{

1 − pij , if (i, j) ∈ E(G)
−pij , if (i, j) �∈ E(G), (3)

where pij is the probability that there is an edge between vertices i and j in a
random graph from the class G. Then, problem (1) is equivalent to the problem
of finding a partition P ′ of G′ such that

|Cut(P ′)| → min . (4)

We summarize these observations in the following theorem.
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Theorem 1. The problem of finding a partition of a given graph G = (V, E) that
minimizes the modularity can be reduced in O(|V | + |E|) time to the problem of
finding a minimum weight cut in a complete graph G′ = (V, E′) with edge weights
given by (3).

For the reduction time bound in Theorem 1 we assume that the edges of E′ \E
are defined implicitly. There are several choices for G that have been favored by
various researchers. The random graph model G(n, p) of Erdös-Renyi [7] defines
n vertices and puts an edge between each pair with probability p. Clearly, the
expected number of edges of G(n, p) is

(
n
2

)
p. Hence, for a graph with expected

number of edges m

pij = p =
m(
n
2

) · (5)

One disadvantage of the G(n, p) model is that it fails to capture important
features of the real-world networks, in particular, the degree distribution. As has
been recently observed [3], many important types of networks like technological
networks (the Internet, the WWW), social networks (collaboration networks,
online social networks), biological networks (protein interactions) have degree
distributions that follow a power law, e.g., the fraction of the vertices that have
degree k > 0 is roughly proportional to αk−λ for some constants α and λ > 0.
Such networks are called scale-free. In comparison, the degrees of a random graph
from the G(n, p) model follow a Poisson distribution, i.e., the probability that
a given vertex has degree k is

(
n
k

)
pk(1 − p)n−k and the expected degree of each

vertex is pn. Hence, the Erdös-Renyi model may not be suitable as a choice for
G when used for determining the community structure of graphs of the above
type.

One model that takes into account the degrees of the vertices is studied by
Chung and Lu in [5]. In that model, the probability that there is an edge between
a vertex i and a vertex j is

pij =
didj∑n
k=1 dk

, (6)

where d1, · · · , dn are positive reals corresponding to the degrees of the vertices
such that max1≤i≤n d2

i <
∑n

i=1 di. (The last condition guarantees that such a
graph exists if all numbers di are integers.) We will refer to that model as the
Chung-Lu (CL) model. Clearly, in the CL model, the expected degree of vertex
i is di, compared with pn (i.e., independent on i) in the G(n, p) model.

In the next section we will describe an efficient method for finding a MWC
of a graph G′ with weights on the edges satisfying (3) and pij defined by (5) or
(6).

2.2 Finding a MWC Using Multilevel Graph Partitioning

Above we established an important relationship between the graph clustering
and the MWC problems, i.e., that the problem of finding a partition of a given
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graph that maximizes the modularity can be reduced to the problem of finding
a minimum weight cut. Most existing work on the MWC problem considers the
case where all weights are non-negative. The MWC problem in the case of non-
negative weights is known to be polynomially solvable, e.g., by using algorithms
for computing maximum flows [1]. In contrast, the MWC problem in case of real-
value weights is NP-hard and there is very little known for the general version of
the problem. Here we show that available heuristics for another related problem,
graph partitioning, can be adapted to solve this version of the MWC problem.

Overview of the multilevel partitioning method. Formally, the graph par-
titioning (GP) problem is, given a graph G = (V, E), find a partition (V1, V2) of
V such that ||V1| − |V2|| ≤ 1 (i.e., the partition is balanced) and Cut(V1, V2) is
minimized. (Some versions of the problem consider partitions of arbitrary car-
dinalities.) Note that, in comparison with the minimum cut problem, there is
the additional requirement for a balanced partition. Because of its important
applications, e.g., in high performance computing and VLSI design, GP is a
well-researched problem for which very efficient methods have been developed.
One such approach is the multilevel GP, which is both fast and accurate for a
wide class of graphs that appear in practical applications. Inspired by the multi-
grid method from computational mathematics, it has been used in the works
of Barnard and Simon [4], Hendrickson and Leland [10], Karypis and Kumar
[12,13], and others. The method for bisecting a graph consists of the following
three phases(Figure 2.2):
Coarsening phase. The original graph G is coarsened by partitioning it into
connected subgraphs and replacing each of the subgraphs by a single vertex and
replacing the set of the edges between any pair of shrunk subgraphs by a single
edge. Moreover, a weight of each new vertex (respectively edge) is assigned equal
to the sum of the weights of the vertices (respectively edges) that it represents.
(Weights on the original vertices of G will be defined depending on whether
the G(n, p) or the CL model has been used, as detailed below.) The resulting
graph is coarsened repeatedly by the same procedure until one gets a graph of a
sufficiently small size. Let G0 = G, G1, . . . , Gl be the resulting graph sequence.

Partitioning phase. The graph Gl is partitioned into two parts using any avail-
able partitioning method (e.g., spectral partitioning or the Kernighan-Lin (KL)
algorithm [14]).

Uncoarsening and refinement phase. The partition of Gl is projected on Gl−1.
Since the weight of each vertex of Gl is a sum of the weights of the corresponding
vertices of Gl−1, then the partition of Gl−1 will be balanced if the partition of
Gl is and the cut of both partitions will have the same weight. However, since
Gl−1 has more vertices than Gl, it has more degrees of freedom and, therefore, it
is possible to refine the partition of Gl−1 in order to reduce its cut size. For this
end, the projection of the partition of Gl is followed by a refinement phase, which
is usually based on the KL algorithm. In the same way, the resulted partition of
Gl−1 is converted into a partition of Gl−2 and refined, and so on until a partition
of G0 is found.
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Fig. 1. The stages of multilevel partitioning

Kernighan-Lin refinement. Since the refinement step is the most involved
part of the algorithm, and which ultimately determines its accuracy and effi-
ciency, we will describe it in more detail. It has been shown [13] that the KL
algorithm can be a good choice for performing the refinement.

The KL algorithms involves several iterations, each consisting of moving a
vertex from one set of the partition to the other. Let P = {P1, P2} be the
current partition. For each vertex u of the graph a gain for u is defined as

gain(u) =
∑

v∈N(u)\P (u)

weight(u, v) −
∑

v∈N(u)∩P (u)

weight(u, v), (7)

where N(u) is the set of all neighbors of u and P (u) is that set of P that contains
u. gain(u) measures how the weight of the cut will be affected if u is moved from
P (u) to the other set of P . The KL algorithm then selects a vertex w from the
smaller set of the partition with a maximum gain, moves it to the other set, and
updates the gains of the vertices adjacent to w. Moreover, w is marked so that
it will not be moved again during that refinement step. The process is continued
until either all vertices have been moved, or the 50 most recent moves have not
led to a better partition. At the end of the refinement step, the last s ≤ 50 moves
that have not improved the partition are reversed.

Implementation. The implementation of our algorithm for clustering is based
on the version of multilevel partitioning implemented by Karypis and Kumar
[12,13], which has been made freely available as a software package under the
name METIS. Note that graph partitioning, minimum cut, and clustering are
related, but with important differences problems, as illustrated in Table 1. We
already showed how the clustering problem can be reduced to a minimum cut
problem and here we will show how the resulting minimum cut problem can
be solved by a graph partitioning algorithm based on METIS. Because of the
differences between graph partitioning and MWC, we have to make some evi-
dent changes. For instance, since graph partitioning requires balanced partitions,
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Table 1. Comparison between the clustering, minimum cut, and partitioning problems

Problem Clustering Minimum Cut Graph Partitioning

Objective Minimize modularity Minimize cut size Minimize cut size

Balance of partition Sizes may differ Sizes may differ Equal sizes

Cardinality of partition To be computed To be computed An input parameter

we have to drop the requirement for balance of the partition. We have also to
determine the cardinality of the partition that minimizes the cut size. But the
main implementation difficulty is related to the size of G′. Although the original
graph, G, is typically sparse, i.e., has n vertices and O(n) edges, the transformed
one, G′, is always dense, as it has

(
n
2

)
= Ω(n2) edges. The main challenge will

be to construct an algorithm whose complexity is close to linear on the size of
the original graph, rather than on the size of the transformed one. We have
shown that it is possible to simulate an execution of the multilevel algorithm on
G′ by explicitly maintaining information only about the edges from the original
graph G and implicitly taking into account the remaining edges by modifying
the formulae for computing weights and gains. For instance, if P = {P1, P2} is
a partition of V (G) and we have computed the value of the cut cut(P1, P2) of
G corresponding to P and maintain the values of n1 = |P1| and n2 = |P2|, then
the cut in G′ corresponding to P is

cut(P1, P2) − n1n2p

in the case of the G(n, p) model and hence can be computed in O(1) time. A
similar formula holds for the case of the CL model.

Clustering into an optimal number of clusters. The algorithm described
above is a bisection algorithm, i.e., it finds a partition (and hence clustering)
of the input graph into two parts. Our algorithm for an arbitrary number of
clusters uses the following recursive procedure. We run the bisection algorithm
described above and let P be the resulting partition. If P consists of only one
set (i.e., the original graph G does not have a good cluster partition), we are
done. Else, we run recursively the bisection algorithm on the two subgraphs G1

and G2 of G induced by the vertices of the two sets of P . It is important to
keep, during that recursive call, the weights of the edges computed during the
first iteration instead of recomputing them based on G1 and G2. The reason is
that the random graph model based on G will be different than those based on
G1 and G2 since formulae (5) and (6) will produce different values for pij . It
can be proven that, if the bisection algorithm finds a minimum bisection cut,
the recursive algorithm described above finds a minimum cut (of any number of
parts) and hence finds a clustering maximizing the modularity.

Time analysis. By using the analysis of Fiduccia and Mattheyses of the KL
algorithm from [8], it follows that clustering any network of n vertices and m
edges into two communities by our algorithm takes O(n log n + m) time, where
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n and m are the numbers of the nodes and links of the network, respectively.
Finding a clustering in optimal number of k parts takes O((n log n + m)d) time,
where d is the depth of the dendrogram describing the clustering hierarchy.
Although the worst-case value of d can be Ω(k), typically d = O(log k) [6].

3 Experiments

We performed a number of experiments on randomly generated graphs in order to
measure the accuracy of our algorithm and its efficiency as well as to compare it
with previous algorithms. We chose Newman-Girvan algorithm [18] and Clauset-
Newman-Moore algorithm [6] since they are considered one of the best existing
algorithms and because of the code availability.

3.1 Comparison with Newman-Girvan Algorithm

Following the experimental setting of [18], we generated random graphs with
128 vertices and 4 communities of size 32 each. The expected degree of any
vertex is 16, but the outdegree (the expected number of neighbors of a vertex
that belong to a different community) is set to i in the i-th experiment (i ≤ 16).
Hence, higher values of i correspond to graphs with weaker cluster structures.
The experiment is intended to measure the sensitivity of the algorithm to the
quality of clustering.

Table 2. Comparing the quality of the clustering of our algorithm and [18]

Outdegree Degree Newman-Girvan Ours

1 16 1.00 1.00

2 16 1.00 1.00

3 16 0.98 0.99

4 16 0.97 0.99

5 16 0.95 0.99

6 16 0.85 0.97

7 16 0.60 0.91

8 16 0.30 0.70

Table 2 compares the quality of the clusterings produced by Newman-Girvan’s
algorithm and ours. A clustering produced by any of the algorithms is considered
”correct” if it matches the original partition of communities from the graph
generation phase. (Note that, due to the probabilistic nature of the graphs, the
clustering that maximizes the modularity might be different from the original
partition, especially if the modularity is low.)

Our algorithm classifies correctly more than 99% of the edges for outdegrees
0, 1, 2, 3, 4, 5 and in all cases it is better than Newman-Girvan’s (more than twice
better for the case i = 8).
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3.2 Comparison with Clauset-Newman-Moore Algorithm

Table 3 compares the performance of our algorithm with Clauset, Newman, and
Moore’s algorithm [6]. That algorithm has the same quality of the clustering as
[15], but is claimed to be much faster. The test graphs in all experiments are ran-
dom graphs with different number of clusters, sizes, densities, and modularities.
Each experiment has been run 100 times on different random graphs.

Table 3. Comparison between the performances of our algorithm and [6]. Qorig is the
modularity of the partition used during graph generation, ”QCNM >”, ”Qours >”, and
”Q =” are the percentages of the cases where the algorithm [6] produced a better
modularity, our algorithm produced a better modularity, or both algorithms produced
equal modularities, respectively. TCNM and Tours are the times of the algorithm from
[6] and ours, respectively.

Exp. # vert. # edges # clust. Qorig QCNM > Qours > Q = TCNM Tours

1 200 8930 2 .388 0 8 92 .61 .03

2 300 14891 3 .466 0 22 78 1.01 .05

3 400 21853 4 .474 0 42 58 1.24 .11

4 500 29801 5 .463 0 57 43 1.71 .23

5 600 38776 6 .446 0 70 30 2.25 .15

6 700 48706 7 .426 1 87 12 2.90 .22

7 800 59666 8 .406 2 96 2 3.71 .33

8 900 71546 9 .387 1 99 0 4.44 .35

9 200 9932 2 .298 0 8 92 .68 .04

10 200 4967 2 .299 0 27 73 .54 .03

11 200 2458 2 .298 0 50 50 .61 .02

12 200 1238 2 .295 6 92 2 .46 .00

13 400 41856 4 .176 32 63 5 1.61 .18

14 400 43607 4 .154 39 60 1 1.66 .10

15 400 47797 4 .122 89 11 0 1.84 .07

16 400 8537 4 .244 0 100 0 1.35 .02

17 400 4879 4 .273 0 100 0 1.33 .01

18 400 2653 4 .308 0 100 0 1.33 .03

19 400 1449 4 .370 0 100 0 1.36 .04

20 400 888 4 .375 0 100 0 1.35 .02

21 400 629 4 .394 0 100 0 1.34 .03

In experiments 1–15 the random graphs were generated in the following way:
a graph with no edges is created whose vertices are divided into subsets that
correspond to the clusters; then edges are created with probability pin between
vertices in the same subset and with probability pout between vertices from dif-
ferent subsets. Experiments 1–8 compare how the performance of the algorithms
depends on the number of clusters, which vary from 2 to 9. The results indicate
that our algorithm produces always clusterings with better quality, and the dif-
ference increases when the number of the clusters grows. In experiments 9–12 the
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test graphs have the same number of vertices, number of cluster, and modular-
ity, but different densities. Those experiments show that our algorithm is more
sensitive when the density decreases, and in all the cases our algorithm performs
better. In experiments 13–15, we compare the algorithms when the modularity
(the quality of the original clustering) is very low. We determined that with
modularity less than approximately 0.15 the algorithm from [6] is better, and
if the modularity is greater than 0.15 our algorithm is better. In all the above
experiments, the running time of our algorithm is considerably smaller, whereby
our algorithm is between 7 and 30 times faster than the algorithm from [6].

Finally, in experiments 16–21 the random graphs were created such that their
expected degree sequences satisfy a power law distribution. The exponent of
the density function varies from -1.0 in experiment 16 to -2.0 in experiment 21
in increments of -0.2. The results of the experiments imply that in the case of
power-law degree distributions (scale-free graphs) the quality of our algorithm
consistently beats the one of the algorithm from [6], while our time is in average
54 times smaller than theirs.

3.3 Testing on Real-World Data Graphs

We tested our algorithms on a number of real-world graphs such as the nd.edu
domain data [2], the United States college football data [11], and the Zachary’s
karate club network [20]. In all cases our algorithm produced clustering consis-
tent with our previous knowledge of the communities. For example, we describe
in more detail here the Zachary club network. This example is a standard bench-
mark for community detection algorithms, describing the interactions between
the members of a karate club, which consequently split into two because of be-
tween the members, thereby revealing the hidden communities of the original
network. As shown on Figure 2, our algorithm classified correctly the members

Fig. 2. Zachary’s karate club network. Members of the communities resulting after the
split are denoted by circles and squares, respectively. The communities found by our
algorithm are separated by the vertical line.



A Scalable Multilevel Algorithm for GC 127

Table 4. Measuring the scalability of our algorithm. pin (respectively pout) is the
expected fraction of the number of in-cluster (respectively between cluster) edges to
the number of all pairs of vertices from the same set ( respectively different sets) of
the partition used for graph generation.

pin pout Vertices Edges Total size Time (sec.)

0.10 0.01 5,000 406,125 411,125 1.77

0.14 0.01 6,000 764,126 770,126 3.09

0.18 0.01 7,000 1,283,398 1,300,398 3.22

0.20 0.011 8,000 1,863,710 1,871,710 6.66

0.20 0.013 9,000 2,418,730 2,427,730 5.68

0.21 0.014 10,000 3,153,106 3,163,106 7.27

0.22 0.015 15,000 6,295,801 6,310,801 15.18

of the two subgroups, except for node 10. That node has the same number of
links (five) to both communities, hence adding it to the smaller community re-
sults in a greater modularity (e.g., our partitioning has a better modularity than
the ”real” one.)

3.4 Measuring the Scalability

We also tested the speed of our algorithms by running them on a 2 GHz desktop
computer on graphs of different sizes. The results are illustrated on Table 4 and
clearly show the extraordinary speed and scalability of our algorithms.

4 Conclusion

This paper proposes a new approach for graph clustering by reducing the clus-
tering problem to a minimum cut problem and then solving the latter problem
by applying methods for graph partitioning. Our proof-of-concept implementa-
tion, based on the METIS partitioning package, demonstrated the practicality
of the approach. The changes we made to METIS were minimal and various
improvements and refinements that take into account the specifics of the clus-
tering problem, use alternative minimum cut or graph partitioning algorithms,
or apply heuristics and parameter adjustments in order to improve the accuracy
are possible and will be topics of further research.

Acknowledgement. The author is indebted to Melih Onus for helping with
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We also would like to thank the developers of METIS for making their source
code publicly available.
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Abstract. In this paper, a phrase recommender algorithm is proposed
that suggests the related frequent phrases to an incomplete user query.
The suggested phrases are extracted from past user queries based on the
frequency rate of the phrases. A query recommender algorithm called
OQD (Online Query Discovery) has also been designed for comparison
purposes. Simulation results show the efficiency of the proposed phrase
recommender algorithm compared to the OQD. The phrase recommender
algorithm significantly reduces the size of the candidate set, which results
in smaller memory usage and better performance, while recommending
more appropriate phrases to the user.

1 Introduction

User queries submitted to the web search engines are not always informative
enough for retrieving the related pages to the user intention. The main problem
is that users may not know the best query items they should enter to get the
most related web pages to their intentions. They may not be familiar with the
specific keywords in that domain knowledge. A user may remember only a part
of the phrase that he/she wants to use in the query string. Sometimes the user
does not know how to order the keywords (most web search engines are sensitive
to the order of the keywords) or even does not know the correct spelling of a
specific keyword in the query string. A novice user sometimes sends an imperfect
query and scans the returned web pages (even reads a number of the returned
documents) to prepare a more precise query by finding new related keywords
in the documents. Although this partially treats the problem, it is often not a
straight forward task. Finding related keywords in a list of web pages full of
unrelated information is a frustrating task for the impatient users.

Significant efforts have been put into designing appropriate mining techniques
for web search query logs for query recommendation as well as query expansion.
In the case of query recommendation, suggesting related queries is considered,
while appending the related items to a newly submitted query is the subject of
query expansion. Google has launched the google suggestion service that recom-
mends relevant terms for query completion. The algorithm has not been pub-
lished; therefore, the efficiency of the algorithm cannot be evaluated. A deficiency
of Google’s method is that the suggestions are only provided for the first phrase
in a query. A Phrase is a sequence of words in a query (it can be a word or the
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whole multi-item query) that is frequently used by users. If the user attempts to
enter two different frequent phrases in the query, Google does not provide any
suggestions for the second one. It seems that Google deals with the whole query
as one phrase. On the other hand, the suggestions are only the words that can
be appended to the end of the query. What if the user knows only the middle
part of a query?

A query completion algorithm has been proposed in [3] that suggests the fre-
quent words of the last incomplete word in the query. The suggested words are
extracted from the documents that contain the previous words of the incom-
plete query. The differences between the document space and the query space
have been emphasized in [6] due to the fact that the similarities, preferences
and terms in document space are not necessarily compatible with the ones in
the query space. We therefore prefer to extract the frequent phrases from the
previous queries rather than the related documents which is employed in [3]. Our
algorithm suggests the complementary phrases for an incomplete user query. The
complementary phrases are the ones that contain a part of the uncompleted user
query. The phrases are actually the conceptual frequent phrases mined from past
users’ queries. The conceptual frequency rate is a new definition introduced in
this paper, which we believe is more appropriate for frequent phrase extraction
from query streams compared to similar definitions.

The rest of the paper is organized as follows. In the next section, the concep-
tual frequency rate definition for mining frequent sequences in a data stream is
described. In Sections 3 and 4, the phrase recommender algorithm is given, and
the simulation results are provided. The paper is finally concluded in Section 5.

2 Conceptual Frequency Rate

Legacy algorithms for frequent sequence mining extract the frequent items from
a static dataset. A dataset is a set of transactions. Each transaction contains a
list of items. The algorithms find the maximal frequent sequences of items that
satisfy a user defined minimum support value. Huge number of daily queries
has changed the nature of the query logs to query streams. The differences
between mining data streams and mining static datasets have been pointed in
[5]. Firstly, each transaction within a data stream should at most be examined
once. Secondly, a mechanism is needed to bind the number of candidate elements
due to the continuous generation of new data elements. Finally, the mining result
should be available whenever it is requested regardless of the stage of the process.
Charikar et al. [4] have proposed a one-pass algorithm for estimating the most
frequent items in a data stream. The algorithm addresses the problem that comes
up in the context of search engines, where there is a query stream sent to the
search engine and the goal is to find the most frequent queries handled in some
period of time. A query is an item in the algorithm, while in this paper; we are
interested in finding the common phrases used in the user queries. A query is
composed of a number of phrases. Each phrase is a word (generally an item) or
a sequence of words.
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Min-support is not a suitable threshold in data stream mining due to the fact
that there is an unlimited number of transactions in a data stream. A phrase
may be frequently seen in some periods of time, while it does not frequently
occur in other periods. Therefore, the phrase would be a frequent phrase only
in those periods of time. We proposed frequency rate in [2], a new definition for
mining frequent sequences in data streams, which is defined as follows:

fP =
nP

tc − tP + 1
, (1)

where fP is the frequency rate of the phrase P, nP is the occurrence number
of P, tc is the current transaction number and tP is the birth number of P.
Two parameters tc and tP are actually the current date and the phrase birth
date respectively. The frequency rate, fP , is a real number between 0 and 1. A
frequency rate of zero for a phrase means that the respective phrase has not been
seen in any of the transactions in the data stream, while a frequency rate of one
implies that the phrase is present in all of the transactions in the data stream. A
phrase is frequent if its frequency rate satisfies the user defined frequency rate,
fu.

Our proposed algorithm in [2] extracts the frequent phrases of a given data
stream. The algorithm satisfies the data stream mining constraints mentioned
earlier. It examines a transaction only once. It also decreases the number of
elements in the candidate set compared to the other general algorithms. The
reason is that the algorithm does not add a longer phrase to the candidate set,
unless the shorter sequences of the phrase are frequent. The frequent phrases can
also be extracted from the candidate set regardless of the stage of the algorithm.
The algorithm creates a phrase in the first visit, monitors its frequency rate while
reading the data stream. It extracts the phrase as a frequent phrase as long as
it is frequently seen in the transactions and deletes it as soon as its frequency
rate does not satisfy fu. The phrase may be born again in another part of the
data stream.

As an example, consider the data stream DS in which transactions T1 =
A1A2A4A5, T2 = A2A4, T3 = A1A2A3A5 and T4 = A2A3 are repeated peri-
odically. The frequent phrases resulting from different fu values are shown in
Table 1.

Table 1. Frequent Phrases and Conceptual Frequent Phrases of the sample Data
Stream DS

fu Frequent phrases (fP >fu) Conceptual frequent phrases (cfP >fu)

0.2 A1, A1A2, A1A2A3, A1A2A3A5, A1A2A4,
A1A2A4A5, A2, A2A3, A2A3A5, A2A4,
A2A4A5, A3, A3A5, A4, A4A5, A5

A1A2A3A5, A1A2A4A5, A2A3, A2A4

0.4 A1, A1A2, A2, A2A3, A2A4, A3, A4, A5 A1A2, A2A3, A2A4, A5

0.6 A2 A2
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The frequency rate definition is suitable for data stream mining, however, it
is still not appropriate for the real world cases such as phrase recommendation
in web search engines. The phrase recommender algorithm needs to mine the
longest frequent phrases that the users frequently submit in their queries. A
way for mining the longest frequent patterns is to find the maximal frequent se-
quences. There are cases where a frequent phrase is also a part of longer frequent
phrases. Such a phrase is frequent regardless of its occurrences in the longer ones.
The problem of maximal frequent phrase mining techniques is that they do not
classify such phrase as frequent. Consider the phrase “New York city map” as a
frequent phrase within user queries such as “New York city map with streets”
and “New York city map Manhattan”. On the other hand, consider the phrase
“city map” as a frequent phrase in user queries such as “London city map”
and “Toronto city map”. A frequent sequence miner finds all the sub phrases
of these two sequences as a frequent phrase. This is not the proper answer due
to the fact that phrases like “York city”, “York city map” are not the common
query phrases. On the other hand, a maximal frequent sequence miner only finds
“New York city map” as a frequent phrase. The phrase “city map” is a part of
the bigger phrase and therefore is not recognized as an independent frequent
phrase.

Considering the sample data stream DS, there are 4 transactions (T1, T2, T3

and T4) that should be chosen as frequent phrases when fu=0.2. A frequent
phrase miner finds 16 frequent phrases for fu=0.2, while a maximal frequent
phrase miner finds only two phrases T1 and T3. None of these results are actually
the proper answers. Conceptual frequency rate is defined as follows:

cfP =
cnP

tc − tP + 1
, (2)

where cfP represents the conceptual frequency rate of the phrase P, cnP de-
notes the conceptual occurrence number of P, which is defined by Equation 3, tc
and tP represent the current transaction number and the phrase birth number,
respectively.

cnP = nP −
∑

Pi∈SSP

cnPi , (3)

where SSP is a set of all frequent phrases such as Pi, such that P is a part of
Pi.

Equation 2 implies that a phrase is conceptually frequent only if it is frequent
regardless of its occurrence number in the longer frequent phrases. For the sample
data stream DS, the frequent phrases resulting from different fu values based on
conceptual frequency rate definition are shown in Table 1. All four transactions
are chosen as frequent phrases for fu=0.2. The phrases “A1A2”, “A2A3”, “A2A4”
and “A5” are conceptually frequent for fu=0.4. From another perspective, these
phrases are the longest frequent phrases with frequency rates higher than 0.4
and if they are removed from data stream, there are no more phrases with a
frequency rate higher than 0.4.

The proposed OFSD algorithm in [1], extracts the conceptual frequent phrases
from a given data stream. In the method, candidate set (CS ) is a directed graph.



A Phrase Recommendation Algorithm Based on Query Stream Mining 133

Each node of the CS is a candidate phrase and an edge l(i,j) is considered to be
directed from Pi to Pj , where T : Pi → Pj (implies Pj immediately follows Pi in
the transaction). The detail of the algorithm along with the proof of correctness
can be found in [1].

3 Phrase Recommender Algorithm

By applying OFSD algorithm to the user queries in a web search engine, the fre-
quent phrases of the queries are collected continuously in a dataset. The frequent
phrases used by previous web surfers are suitable resources for recommending
relevant phrases to a new user. An important issue in this context is that the
frequency rates of the phrases may change with time. This is due to the fact that
some of the users’ interests may not last in for a long term. There are certain
events (e.g. soccer world cup), which result short-time frequent phrases in the
users’ queries. The algorithm is able to extract a short-time frequent phrase in its
related queries list and then will forget it whenever it is not frequent anymore. A
phrase has a chance to be born in different query lists, be selected as a frequent
phrase and die after a while. A phrase is considered for recommendation as long
as it is frequently used by the users.

When a user enters a query segment in the user interface of web search en-
gine, the phrase recommender algorithm searches to find the conceptual frequent
phrases that contain the query segment. This list of phrases is called relevant
list. The relevant list is recommended to the user due to the fact that the phrases
within the relevant list have been previously frequently used by other users. This
helps the user in different aspects. Firstly, the user may find new related key-
words to its query in the relevant list. Secondly, he/she may realize the correct
sequence of the query items he/she wants to enter. The sequence of items in a
multi-element phrase is important because the common web search engines (e.g.
Google) are sensitive to the sequence of the items in the query. Finally, he/she
may recognize the syntax of the phrase items. A rational assumption here is that
the relevant list consists of well-formed phrases (meaningful phrases without any
syntax errors). The fact is that the probability of entering a well-formed phrase
is more than entering any certain incorrect form of the phrase, therefore, the fre-
quency rate of a well-formed phrase in a query stream is more than any specific
incorrect form of that phrase.

Relevant list of phrases for recommendation is initially constructed based on
the last uncompleted word of the incomplete query. If the size of the relevant
list is more than a threshold (LS ), the last two or more sequence of items in the
incomplete query will be used for frequent phrase selection to decrease the size of
the relevant list. The threshold LS is set to 10 in the Google suggest website. The
reason is that it is not easy for the user to go through all the phrases in a long
relevant list. For the cases that the size of the relevant list is still greater than
LS, even by using all the items in the query segment, the algorithm only returns
the top LS phrases as the relevant list. The relevant list is ordered based on the
frequency of the phrases. The most frequent phrase is on top of the relevant list.
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Fig. 1. The comparison between the phrase recommender algorithm based on OFSD
algorithm and the OQD algorithm for 1,000,000 queries, fu=0.0008

4 Simulation Results

We have designed a query recommender algorithm called OQD (Online Query
Discovery), which is used for comparison purposes. A query is a non-separable
item in the majority of studies done by other researchers. Here, we show the
efficiency of phrase recommendation instead of query recommendation. The OQD
keeps track of the number of query occurrences. The algorithm is similar to the
phrase recommender algorithm, except that the relevant list is a list of queries
instead of phrases. Note that the CM value (an internal parameter in OFSD [2])
has been set to 5 in all of the experiments.

In the first experiment, the phrase recommender algorithm based on OFSD
is compared with OQD. The algorithms is applied to a part of Alta Vista 2002
query log containing 1,000,000 queries. The number of distinct queries is 496,782.
The average number of items in each query is 2.06. The number of multi-item
queries is 353,858. Figure 1 shows the results of applying both algorithms, where
fu=0.0008. Figure 1(a) shows the number of elements in the candidate set that
is the bottleneck of the algorithm. The OFSD algorithm inspects approximately
3,000 elements for each query in the worse case, while the OQD algorithm goes
over near 500,000 elements for a query. The huge difference is because of the
fact that a large number of different queries are constructed by the combina-
tions of a small number of frequent phrases. The smaller number of elements in
the candidate set means the lower memory as well as the better performance.
Figure 1(b) shows the percentage of queries that have been performed for an
appropriate recommended phrase. Since the database is analyzed only once as a
query stream, we can use the whole query log for both training and evaluation
purposes. The query log is parsed sequentially. Each query Qi is initially evalu-
ated by the phrase recommender algorithm and then parsed as a new query by
OFSD algorithm for training. In the evaluation step of Qi, the OFSD has already
been trained based on the previous queries. Qi is considered as a satisfied query
if a multi-element phrase of Qi would be a conceptual frequent phrase in the
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candidate set. Therefore, the number of the satisfied queries is incremented by
1, whereas this only happens in the OQD algorithm when Qi is a frequent query
in CS. Number of queries that are supported partially by phrase recommender
algorithm based on OFSD is 4 times the number of queries that are supported
by OQD algorithm (see Figure 1(b)). The experiment proves on one hand the
efficiency of the OFSD algorithm in reducing the size of the candidate set, and
extracting the appropriate phrases suitable for recommendation on the other
hand.

Fig. 2. The results of applying phrase recommender algorithm to UNB query log with
45,000 queries

In the second experiment, the phrase recommender algorithm is applied to
a five week query log extracted from the web site of the University of New
Brunswick (UNB) web search engine (http://www.unb.ca/search.html), which
consists of 45,000 queries. The special feature of the UNB query log is that its
web search engine is domain specific; therefore the variety of phrases entered by
users is limited. The effects of the parameter fu to the number of phrases in the
candidate set as well as the satisfied queries and CFPs are shown in Figure 2.
Decreasing fu causes more elements in the candidate set (see Figure 2(a)) while
increasing the number of satisfied queries (see Figure 2(b)). Therefore, there is a
trade-off between the performance of the algorithm and the query satisfaction.
This shows the fact that setting fu is an important issue to get a reasonable
feedback along with a suitable performance. The percentage of satisfied queries
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for UNB query log is about twice of the ones in AltaVista query log while the
number of input queries is less than 5%. Figure 2(c) shows that the number of
CFPs does not reach a stable value for fu=0.0004. The reason is that 45,000
queries are not sufficient for the algorithm to find a considerable number of
multi-element frequent phrases. This is the reason that the number of CFPs is
still increasing after 45,000 query inputs for fu=0.0004. We intend to apply the
algorithm to a larger dasaset collected from a longer period of time in the UNB
web search engine.

5 Conclusions

In this paper we have proposed a phrase recommender algorithm for web search
queries based on the conceptual frequent phrases extracted from the past user
queries. The algorithm suggests the frequent related phrases to an incomplete
query that user has entered. The simulation result shows the efficiency of the
proposed phrase recommender algorithm to use very low memory and reasonable
amount of successful recommendation.

Further research in this direction includes a mathematical analysis for a better
understanding of appropriate fu setting in different types of web search engines.
Developing a live phrase recommender (considering the parameter LS ) is also
our future work.
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Abstract. Generative models are often used in modeling real world
graphs such as the Web graph in order to better understand the processes
through which these graphs are formed. In order to determine if a graph
might have been generated by a given model one must compare the fea-
tures of that graph with those generated by the model. We introduce
the concept of a hierarchical degree core tree as a novel way of summa-
rizing the structure of massive graphs. The degree core of level k is the
unique subgraph of minimal degree k. Hierarchical degree core trees are
representations of the subgraph relationships between the components
of the degree core of the graph, ranging over all possible values of k. We
extract features related to the graph’s local structure from these hier-
archical trees. Using these features, we compare four real world graphs
(a web graph, a patent citation graph, a co-authorship graph and an
email graph) against a number of generative models.

1 Introduction

The primary motivation behind this paper is to compare real-life graphs such as
the Web graph with various models to determine the best fit. There are many
reasons for studying the structure of the Web. The most predominant of these
is improving our ability to search the Web. Other research occurs in sociological
analysis of communities represented by the Web graph. The ability to model
the formative process underlying a real-life graph provides useful insight into its
structure.

There are several methods available for comparing two graphs to determine
their similarity. The most common of these approaches is a comparison of the
degree distribution of two graphs. Other descriptive statistics include the distri-
bution of clustering coefficients, the frequency of occurrence of isomorphic copies
of various subgraphs [1] and the diameter. We focus on using the degree core
decomposition of a graph to extract features which can be used for summarizing
a graph and performing model validation.
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A k-core of a graph is a maximal induced subgraph of minimum degree k.
As we are using degree to induce these subgraphs we will often refer to them as
degree cores, but may use the shorter version where the index k is relevent. It is
straightforward to show [2] that the degree core is unique for a given core and a
given k, and can be obtained by recursively removing all nodes with degree at
most k. The degree cores of a graph can consist of multiple components. For our
purposes, we generate every non-empty degree core of a graph. The components
of the degree cores for all values of k form a hierarchy where two components
have a parent-child relationship, when the child component is a subgraph of the
parent component. We will refer to the tree thus generated as a hierarchical
degree core tree.

To model a real world graph, we compare its hierarchical degree core tree
structure to those of several generative models. More specifically, we examine
the distribution of the number of components in each degree core decomposition.
In our experiments we try to model four real world graphs in this manner.

2 K-cores

Cores were first introduced by Seidman [3] and popularized by Wasserman and
Faust[4]. Batagelj and Zaversnik [2] generalize Seidman’s work beyond simple
degree to include any monotone function p. Examples of such functions range
from the degree (in-degree, out-degree, directionless degree) of a vertex to the
number of cycles of length k passing through a vertex. For the purposes of this
paper we will use degree cores dealing with vertex degree in a similar context as
Seidman used his original cores.

A k-core is the subgraph generated by recursively removing all nodes with
degree smaller than k from a graph. The difference between this and simply
filtering out all vertices with degree < k is best illustrated by comparing their
effects on a simple tree. In the case of a tree, the filtering of all degree-one nodes
results in the pruning of all of a tree’s leaves, whereas the degree core with k = 2
would prune back the leaves of a tree at each recursion, thus destroying the tree
completely.

More formally, let G=(V,E) be a simple graph. A degree core is defined as:

Definition 1. A subgraph Hk of a graph G = (V, E) induced by the set C ⊆ V
is a k-core or a degree core of order k iff ∀v ∈ C degHk

(v) ≥ k and Hk is a
maximal subgraph with this property.

Batagelj and Zaversnik [2] go on to define the core number of a vertex to be the
highest order of a core that contains this vertex.

The current literature indicates that degree cores have been used for variety
of purposes. Most research implementing degree cores involved using them as a
tool to filter the data. Our research differs from the majority of previous work in
that we are interested in degree cores for their own sake, for the the insight they
give into the structure of our data. Alvarez-Hamelin et al. [5,6] have examined the
structures revealed by degree cores. Their research included an analysis of features
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of these degree cores across internet graphs [6] as well as the development of a
visualization tool which makes use of the core numbers of a graph’s vertices [5].

Some areas where degree cores have been employed in the past include:
1) Visualization: Visualization research has been done to examine the degree
core structure of both real world graphs and generative models [5,6,7]. The main
use of degree cores in the field of visualization is the filtering of ’unimportant’
nodes, referring to nodes which have a low core number. As with most visu-
alization techniques, the visualization research using degree cores has limited
relevance to very large graphs with millions of nodes and tens of millions of
edges.
2) Protein Networks: When studying protein networks, researchers are often in-
terested in proteins that interact with other highly interactive proteins. These
proteins appear in degree cores with high values of k [8,9].
3) Internet graphs: When analyzing large graphs the filtering of irrelevant nodes
is often used as a pre-processing step before large graphs are analysed. Low
degree nodes are often the nodes filtered when examining Autonomous System
graphs of the internet. The core number of a node has been used in place of the
degree for filtering these graphs [10].
4) Approximation of betweeness scores: The betweeness score reflects the number
of shortest paths between all node pairs that a node lies on. This is a computa-
tionally expensive feature to calculate across a large graph. It has been shown
in experiments with web graphs that the core number of a vertex is highly cor-
related with this score and might be used as a more efficient substitute [6].

3 Methods

In order to summarize the local behaviour of a graph, we compute every non-
empty degree core of a graph and identify the connected components of these
subgraphs. These components, in turn, form a hierarchy where two components
have a parent-child relationship, when the latter has been immediately split from
the former. We say a component, B, has split from a component A iff B is a
subgraph of A and A is a component of the k-core and B a component of the
(k + 1)-core for some integer k. That is, for the hierarchical degree core tree T :

V (T ) =
{
ci,k ∈ CC(Gk) | i = (1, . . . , ‖CC(Gk)‖), i ∈ Z, ∀k ∈ Z

+
}

E(T ) = {(ca,k, cb,k+1) | V (cb,k+1) ⊆ V (ca,k)}

Here CC(Gk) is taken to be the set of connected components of graph G’s
degree core of order k, ci,k is the ith component of this degree core and V (ci,k)
is the set of vertices contained within the component ci,k.

We refer to the tree thus generated as a hierarchical degree core tree and
use this new structure for both graph summarization and feature extraction. An
example of a graph and its corresponding hierarchical degree core tree can be
seen in Figure 1.
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Fig. 1. A sample graph and its corresponding hierarchical degree core tree. Three
components and their corresponding vertices within the hierarchical degree core tree
have been circled for clarity. The larger circle is the 2-core while the union of the smaller
circles makes up the 3-core.

It is clear from this definition that, given a node within the kth level of our
tree, we have a representative cluster, i.e. the connected component containing
the node, within the k-core of our graph. When proceeding to the (k +1)st layer
of our tree this vertex may have:
1) no children, implying that the component it represents is no longer present
within the (k + 1)-core.
2) a single child, implying that the component remains as a single component
within the (k + 1)-core, though it may or may not have been reduced in size.
3) multiple children, implying that the removal of vertices with core number k
resulted in the component splitting into multiple components.

This hierarchical tree can, at a glance, reveal a great deal of information
concerning the local structure of very large graphs. It efficiently allows one to
identify highly connected regions of a graph across a variety of filtering reso-
lutions which are represented by the values of k. This tree could then be used
by a domain expert to identify components of interest, similar to the way in
which dendrograms are used to identify clusters of interest when performing
hierarchical clustering [11].

In order to meaningfully compare massive, real-life graphs with graphs gener-
ated according to a given model, it becomes necessary to represent them as a set
of features rather than as a full graph structure. The difficulty lies in determining
a set of descriptive features sufficient for describing the structure of our data.
Our research investigates the extraction of such features from the hierarchical
degree core tree. We focus primarily of the number of components in the degree
core subgraph across all k values. We also examine the size of the components in
our hierarchical tree and the distribution of children between each layer of this
tree. It should be noted that these are only a small subset of features that might
be extracted from the hierarchical degree core tree. One might also be tempted
to examine the distributional statistics such as the mean and standard deviation
of component sizes at each level or the degree distribution within each of the
degree core components.
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4 Data

We look at a number of generative models described in the current literature
[12,13] and compare these against four real world graphs in order to determine
the likelihood of their being generated by one of these models. We also com-
pare the degree cores of our various generative models to determine if we can
differentiate between these families of graphs.

Our four real world datasets consist of a webcrawl of: the .gov domain [14], the
NBER patent citation graph [15], an email graph [16], and a subset of the DBLP
coauthorship graph [17]. Each of these graphs possesses a power law degree
distribution, though they possess distinctly different structures. The web graph
is a web crawl of the .gov websites from 2002 and was used as a Text REtrieval
Conference (TREC) data set. It contains approximately 1.2 million unique URL’s
and 9.7 million links between them. The NBER patent database contains all
U.S. patent citations from January 1st, 1975 to December 31 1999, consisting
of approximately 3.8 million nodes and 16 million edges. The email graph is
an anonymized collection representing 16 months of email sent and received
by 16,000 users in the computer science department at Dalhousie University.
It consists of approximately 5 million distinct email addresses and 12.7 million
edges. The subset of the DBLP citation graph consists of some 15,000 non-
isolated vertices and 360,000 edges. Each of the graphs consists of one major
component and a number of smaller disconnected components.

The Web, along with many other real world graphs such as the four graphs
above, exhibits a power law degree distribution. It has been shown that prefer-
ential attachment models mimic this and other properties of these graphs. As
such, these models are ideal for the purposes of our study. Preferential attach-
ment models are a family of models which are generally built over time, and in
which the probability of a new edge connecting to a previous node is directly
proportional to the degree of said node. For comparison, we also examine the de-
gree core structure of models generated by Erdős and Rényi (ER) models [18,19].
Such models are generally referred to as G(n, p) where n is the number of nodes
in the graph and p ∈ (0, 1) is the probability of an edge existing between any
two nodes.

The linear cord diagram (LCD) model was first proposed as a generic progres-
sive attachment model by Barabási [20] and more rigorously defined by Bollobás
[21]. In this model we start with an initial graph G0 and add a vertex to this graph
at every time step. Thus, after t time steps the graph Gt is of size |V (G0)| + t.
When a vertex, vt, is added at time step t, m edges are also added connecting vt

to m vertices in Gt−1. These vertices are selected with probability proportional
to their degree.

The main difficulty with the LCD model is that its structure is purely additive.
As such, the nodes with the highest degree are simply the nodes which have been
in existence for the longest time. In order to circumvent this, we examine the
deletion model of Chung and Lu [22], in which there is a random probability at
each step for the following changes: adding a new node connected to m previous
nodes selected via preferential attachment, adding m edges whose endpoints are
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chosen by preferential attachment, deleting a node selected uniformly at random,
or deleting m edges selected uniformly at random. Here the model is specified
by the probabilities of choosing each of these options and m ∈ Z.

Finally, the Chung and Lu partial duplication model [13] was examined. This
model requires an initial graph for which we used K10 and K500. Here Ki rep-
resents the complete graph of size i, or equivalently the graph of size i where
an edge connects every vertex pair. At each time step, a vertex is randomly se-
lected and copied. Each of this vertex’s edges are then copied with a probability
p. Chung and Lu show that the partial duplication model generates power law
graphs whose power law exponents are dependent only upon the growth process,
and thus independent of the initial graph.

5 Results

The hierarchical degree core trees derived from the web graph, patent citation
graph, co-authorship graph and email graph can be seen in Figures 2, 3, 4 and
5 respectively. All these graphs, with the exception of the co-authorship graph,
consist of a single large component and a large number of very small compo-
nents which vanish completely for values of k > 3. In this graph, a number of
components persist for k < 22. For clarity, we examine the degree core compo-
nent distribution of the single large component of the first three graphs and the
hierarchical tree for k > 12 in the case of the co-authorship graph.

Fig. 2. The hierarchical degree core tree and corresponding component distribution
for the .gov web graph. The hierarchical tree only shows the tree derived from the
major component of the email graph and the component distribution is on a log2 scale.
This is due to the fact that the initial graph contains a large number of small isolated
components.
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Fig. 3. The hierarchical degree core tree and corresponding component distribution
for the NBER patent citation graph. The hierarchical tree only shows the tree derived
from the major component of the email graph and the component distribution is on
a log2 scale. This is due to the fact that the initial graph contains a large number of
small isolated components.

Fig. 4. The hierarchical degree core tree and corresponding component distribution for
the DBLP co-authorship graph. The hierarchical tree only shows the tree derived from
the major component of the email graph and the component distribution is on a log2

scale. This is due to the fact that the initial graph contains a large number of small
isolated components.

Though the hierarchical trees and the component distributions differ be-
tween these two graphs, the web graph and the patent citation graph do share
one potentially interesting similarity, a unimodal component distribution. As
k increases, both graphs fragment into multiple components. The number of
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Fig. 5. The hierarchical degree core tree and corresponding component distribution for
the Dalhousie computer science email graph. The hierarchical tree only shows the tree
derived from the major component of the email graph and the component distribution
is on a log2 scale. This is due to the fact that the initial graph contains a large number
of small isolated components.

components increases until reaching a peak, then decreases as k continues to
rise. The components that split off are small compared to the largest component,
only consisting of, at most, a few hundred highly connected vertices compared
to the main component which possesses thousands of vertices. Though smaller
in size, these nodes remain significant in that the components fragment from the
main graph at very high values of k. In the case of the web graph, 4 components
have fragmented off by k = 83 indicating large highly connected subregions
of our graph that are only loosely connected with our main component. This
unimodal distribution is much more striking in the case of the patent citation
graph, with 36 components separating off from the main component at k = 14.
The smooth decrease in the number of components is likely due to the wide vari-
ance in the component sizes of our highly connected subgraphs. As k increases
slowly these components are pruned equally slowly. The more interesting feature
is the smooth growth in this distribution. This is a feature shared by none of the
generative models examined up to this point. This unimodal component distri-
bution points towards interesting structures occurring near the modes of these
distributions. In both the patent and citation graphs the vast majority of com-
ponents fragment directly from the main component and then vanish without
splitting themselves.

This strongly implies that there is a great deal of local structure within both
of these real world graphs. Further, it implies that the local regions of these two
graphs behave in a similar fashion, breaking apart from the main component
around a single value of k. This implies that the behaviour of our vertices is far
from uniform and that there is an unexplored underlying process at work.
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The co-authorship graph shows striking differences to the patent and citation
graphs. Firstly, its initial components are better connected and remain in the
hierarchical tree to a much greater depth. Secondly, there are two components
in the tree across the vast majority of the levels, occasionally vanishing to be
replaced by a new child of the large component. As before, the secondary com-
ponent is much smaller than the major component (consisting of less than one
hundred vertices) and fragments directly from the major component.

The main component of the email graph has a different structure entirely, as
seen in Figure 5. With the exception of a tiny component early on, the single
large component fails to fragment at any point along the degree core hierarchy.
Though this differs strongly from our previous three real world graphs, it does
bear a striking resemblance to the majority of the generative models examined
in this paper.

When we compare the distributions of our first three real world graphs against
those of our generative models we see a clear difference. All of the models ex-
amined generate single-component graphs that vanish after reaching a given k
instead of breaking apart as do most of our real world graphs. The LCD model,
differs most significantly in structure, as no nodes are pruned until a given k
is reached and then it vanishes entirely. This behaviour is unsurprising as it is
predicted by Theorem 1.

Theorem 1. For any graph, G, generated by the LCD model, the k-core Hk = G
(and is made up of a single component) for k ≤ m and V (Hk) = ∅ for k > m,
where m is the number of edges added to the graph at each step.

Proof. At each step of the iterative construction process, a vertex is added along
with m edges connected to vertices already present in the graph. This process
generates a single component graph with a minimum vertex degree of m. There-
fore, for k ≤ m no vertices will be pruned, resulting in a single component.

For k > m the most recently added vertex is guaranteed to have degree = m
and is thus removed. This pruning guarantees that the previously added vertex
will now have degree = m. This iterative argument continues until all vertices
are pruned, resulting in zero components.

In the case of the ER graph, we see a single component that persists across a
very small range of k values before vanishing. Though not guaranteed, this is
not surprising given the homogeneous nature of the vertices in an Erdős-Rényi
graph. This difference is not entirely unexpected, as the ER graph possesses an
entirely different degree distribution from our real world graphs. This analysis
was included as a comparative baseline.

It appears that the CL-Deletion model is too similar to the LCD model to
generate the localized behaviour which we see in our real world graphs. The
addition and deletion of nodes and edges in this model occur uniformly at random
across the graph. As such, they do not serve to add sufficient local structure to
mimic the component distributions found in our real world examples. They do,
however, serve to elongate our hierarchical tree structure by creating several
distinct degree core graphs as k varies.
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The duplication model was examined with the intent that it might contain
more local structure. Every simulation of this model resulted in a single large
component and a number of very small isolated vertices. In each case, the single
main component remained in our tree across a large range of k, never generating
more than a single child at each step. Though the duplication model did not
match our first three real world graphs, its distribution was the most similar to
that of our email graph. Both hierarchical degree core trees possessed a single
large component slowly shrinking across a wide range of k values and never
fragmenting.

6 Conclusion

Matching any number of features possessed by two graphs should not be suffi-
cient to determine if both graphs were generated by the same family of models.
However, failing to match features is sufficient for us to reject the hypothesis
that a particular model generated a graph. Very few strong independent fea-
tures have been proposed to characterize the structure of a graph. We have
shown that hierarchical degree core trees possess a number of features which are
useful in identifying the local structures within a graph. These features could be
used along with those currently in the literature to increase the confidence in
matching a graph with a generative model.

The degree core component distribution illustrates a rich local structure con-
tained within our real world graphs. This along with the failure of our generative
models to demonstrated any form of complex structure under this distribution
supports the effectiveness of hierarchical degree core trees. Though in this case
inspection seems sufficient to discriminate between our models and our real world
graphs the next necessary step is to propose a quantitative similarity measure
between our hierarchical trees. This measure might then be compared with a
similar measure across the underlying graphs.

The email graph seems to match the simple structure demonstrated by the
generative models, particularly that of the duplication model. One should be
careful to refrain from making the assumption that the process underlying the
email graph was a partial duplication process. As seen with power law models,
there are many different models that could be used to generate a graph with a
particular feature. It is necessary to examine a larger number of features before
making any claims about the underlying process of a given graph.

The hierarchical degree core trees introduced in this paper effectively sum-
marize the local structure contained within our real world graphs, which allows
easy identification of interesting structures contained within a given graph. Even
for very large graphs these trees are easily visualized. They can assist a user to
determine the k value for which the degree core subgraph will contain the richest
amount of information. This technique can be useful for both filtering and data
exploration. In the case of at least two of our real world graphs, a good initial
filter might be selecting the mode of the unimodal component distribution.
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7 Future Work

Future research will involve enriching our hierarchical trees with extra infor-
mation to provide a more complete summary of the graph in question. Some
methods we have begun to examine include colouring vertices by the size of the
component it represents or by examining the number (or proportion) of vertices
of interest contained within the given component. We will continue to examine
other features derived from our hierarchical trees which may prove useful in the
characterization of large graphs.

Batagelj and Zaveršnik[2] extend the concept of degree cores to vertex features
besides degree, such as the number of cycles passing through a given vertex. Us-
ing these other features to induce our hierarchical degree core trees may provide
greater insight into the structure of our graphs.

The segmentation of our graphs into separate highly connected subgraphs
suggests natural clusters within the graphs. Though these subgraphs are too
small to represent major clusters in themselves, they could easily represent the
backbone of larger, more loosely connected clusters. These components may or
may not possess a meaningful interpretation. If they do, we will examine the use
of this technique for graph clustering.

Improved graph layout techniques should improve the interpretability of our
larger hierarchical trees.

Currently the code in use for computing our hierarchical degree core trees is
written in C++ and makes use of the Boost Graph Library [23]. As such, it scales
well to graphs containing millions of vertices and tens of millions of edges on
conventional hardware. For analyzing larger graphs it will become necessary to
either make use of parallel BGL or to write our own external memory algorithm.
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Abstract. The link structure of the Web is generally viewed as the webgraph,
and web structure mining is a research area that mainly aims to find hidden com-
munities in the Web by focusing on the webgraph. In this paper, we identify a
common frequent substructure by observing the webgraph, and newly define it as
an isolated star (i-star). We propose an efficient enumeration algorithm of i-stars,
and try structure mining by enumerating them from the real web data. As a result,
we observed that most of i-stars correspond to index structures in single domains,
while some of them are verified to stand for useful communities, which implies
the validity of i-stars as candidate substructure for structure mining. We also sug-
gest that the notion of i-star can be a helpful tool for preprocessing the webgraph
to have its succinct representation for further structure mining.

Keywords: isolated star, link analysis, scale-freeness, web community, webgraph,
web structure mining.

1 Introduction

In the explosively evolving Web, by regarding the Web as a huge database, it is ex-
tremely important not only to obtain primary information but to find hidden information
that cannot be found by naive retrievals. It is often called ‘web mining’, and web struc-
ture mining aims to find hidden communities that share common interests in specified
topics in the Web, etc. [1,3,5,7], by focusing on the webgraph that represents the link
structure among web pages.

On this model, a set of web pages of a community or its core is usually supposed
to constitute a dense subgraph or a frequent inherent substructure in the webgraph, and
web structure mining is actually realized by extracting them from the webgraph.

Related Works: As for significant substructures as communities, Kleinberg’s hub-
authority biclique model [5] is well known and attractive. Some experimental research
for this direction try to enumerate (a subset of) bicliques from the webgraph and are
successful for mining communities (or their cores) [6,7,8]. However, since there exist
potentially enormous number of bicliques, it has become quite hard to carry out an ex-
haustive enumeration and to have effective outcome in the recent Web [11]. Another
direction is a max-flow (or min-cut) approach that finds small cuts separating a specific
set of seed pages [3]. However, this also has a drawback in the sense that we need spec-
ify seed pages in advance. On the other hand, a substructure called isolated clique [4],
which has an efficient way for enumeration, can find communities or menu structures
from the entire Web [11].

W. Aiello et al. (Eds.): WAW 2006, LNCS 4936, pp. 149–156, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Our Contributions: In the light of these preceding research, our contributions in this
paper are summarized as follows: (i) identify a typical frequent substructure in the real
(undirected) webgraph, (ii) define those structures as isolated stars so that they become
easy to be enumerated, (iii) design an efficient algorithm for enumerating isolated stars
that runs in (input) linear time, and (iv) exhaustively enumerated isolated stars from the
real web data and give semantic analyses, which bring rich observations.

2 The Webgraph and the Web Data

The webgraph is a directed graph whose nodes and arcs are (web) pages and (hy-
per)links among pages, respectively [2]. One of the most important properties of the
webgraph is its scale-freeness, which implies that the (in-)degree distribution of nodes
shows the power-law.

For our experiments, we prepare a webgraph from the data collected by WebBase
Project [10]. Here, since the graph constructed from the original web data is not nec-
essarily simple, we apply two preprocesses: 1. remove loops, and 2. identify multiple
arcs with a single arc. Hereafter, we call the webgraph constructed in this way ‘the’
webgraph. Table 1 shows the information of the acquired web data and the webgraph.

Table 1. The acquired web data and the con-
structed webgraph

webgraph (undirected)

Host, Port# WB1, 7008
time of collection Aug., 2003
#domains 59,565
#pages (nodes) 95,821,917
#links (arcs) 1,737,732,518 345,699,858

intra-domain 1,591,587,293 345,514,732
inter-domain 146,145,225 185,126

We use the term domain as a set of
pages that forms a physical partition of the
Web with the same string *** in the URL
notation http://***/, while we consider
that a site forms a semantic partition of the
Web. We call the webgraph induced by all
the nodes in a single domain the webgraph
of the domain. In this paper, since isolated
stars will be defined on undirected graphs,
we need regard to the webgraph as an undi-
rected graph. There may be two simple al-
ternatives to do it; (a) regard every arc as an undirected edge, or (b) regard bidirectional
arcs as a single edge. From a viewpoint that mutual links can have significant infor-
mation in the Web [11], in this paper, we introduce a webgraph that consists only of
mutual links as single undirected edges by discarding all the one-way links. We refer
to this webgraph as the undirected webgraph.

Fig. 1. A part of the “undirected” webgraph

From the webgraph constructed in this
way, we can observe several interesting
facts, some of which are not known so far;
both in- and out-degree distributions are
verified to show scale-freeness with dif-
ferent scaling exponent; more than 1/3 of
links in the original graph also have links
of the reverse direction (i.e., mutual links)
and that more than 99% of mutual links
exist in single domains. From these, mu-
tual links between different domains and
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the structures that contain those links can be expected to have significant information
from the viewpoint of structure mining [1,7].

By observing a part of the ‘undirected webgraph’ (Fig. 1), we notice the existence
of some specific substructures. One is a clique-like structure, defined as a clique or an
isolated clique to facilitate their enumeration [4], and they can find useful information in
the Web [11]. Another is a star-like structure, a set of nodes emanating from one central
node. This structure is not necessarily dense, however, since it appears so frequently,
we can expect that it has some significant information in the Web.

3 Isolated Stars

In this section, to capture star-like substructures that can frequently be observed in the
real webgraph, we first give the notion of stars. There may be several possible variants
that define star-like structures, of course, we especially give a definition as isolated
stars in conjunction with the preceding notion of isolated cliques [4]. We investigate
properties of isolated stars, and then present a naive but efficient enumeration algorithm.

3.1 Definition of Isolated Stars

A star graph is a bipartite graph K1,|R| with its partite sets {c} and R (� ∅) ({c} ∩ R = ∅).
We call a node c a center node and a node v ∈ R a satellite node of a star.

(a) (d)(c)(b)

Fig. 2. (a) An isolated star, and (b), (c), (d) not isolated stars

For an undirected graph
G = (V, E) and a subset S ⊆
V , if a subgraph G[S ] in-
duced by S is a star graph,
we call S a star. We some-
times denote a star S = {c}∪
R by S c,R, and the size of a
star S c,R is |R|+ 1. A proper star is a star S = S c,R that satisfies deg(v) = 1,∀v ∈ R (leaf
constraint). A proper star S is maximal if there is no proper star S ′ such that S ⊂ S ′. For
subsets X, Y of V (X∩Y = ∅), let an edge set E(X, Y) = {{x, y} | {x, y} ∈ E, x ∈ X, y ∈ Y}.
Now, if a star S of G = (V, E) is (i) a maximal proper star S c,R and (ii) |E({c},V−S )| < |R|
(isolatedness), we call it an isolated star (i-star) (Fig. 2).

According to this definition of i-stars, we can easily show the following property:

Proposition 1. For two i-stars S i = S ci ,Ri and S j = S cj ,R j , S i ∩ S j � ∅ holds only if
Ri = {c j} and R j = {ci}.
This implies that more than one i-star can seldom share their nodes, and it makes their
enumeration to be easy. This is also convenient and pertinent in the sense that i-stars
can stand for disjoint communities or their cores in the Web.

3.2 Properties of Isolated Stars and Isolated Cliques

An isolated clique (i-clique) of an undirected graph G = (V, E) is defined as a set of
vertices C (⊆ V) that forms a clique satisfying |E(C,V − C)| < |C|, and a linear time
algorithm for their enumeration has been proposed [4].
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As for the disjointness of i-cliques, we can show the following fact:

Proposition 2. For two i-cliques C1 and C2, if they share q nodes (q ≤ min{|C1|, |C2|}),
then |C1| = |C2| and either q = 1 or q = |C1| − 1 (= |C2| − 1) holds. In both cases,
E(C1 ∪ C2,V − (C1 ∪C2)) = ∅.
Furthermore, we can say about the disjointness between an i-star and an i-clique:

Proposition 3. For an i-star S = S c,R and an i-clique C,
(i) if |C| ≥ 3, then S ∩ C = ∅,
(ii) if |C| = 2, then S ∩C � ∅ only if |S | = 2 or 3. In this case, C ⊆ S holds.

As we saw in the series of propositions above, our definition of i-stars is given so that
they are disjoint from both i-stars themselves and i-cliques except for few restricted
cases. From a semantic point of view, this promises that all the i-stars and i-cliques can
simultaneously stand for independent communities or their cores in the Web.

3.3 Enumeration of Isolated Stars

Once we have the definition of i-star and know that two i-stars never have an intersection
except for the case that their sizes are both two, it is not so difficult to design an efficient
algorithm for their enumeration. We now present such an algorithm as I STAR below.

Algorithm I STAR (Input: G = (V, E), Output: All i-stars)
S1: for all vertex v ∈ V do

if deg(v) = 1 then label v “unchecked”;
else label v “ignored”;

S2: for all vertex v ∈ V do
if v is “unchecked” then

S3: let w be the unique vertex in N(v);
U := ∅; i := 0; // |U | = i
for all vertex u ∈ N(w)

if deg(u) = 1 then
U := U ∪ {u}; i := i + 1;
label u “checked”;

S4: if deg(w) < 2i then // |E({w},V − (U ∪ {w}))| < |U |
output U ∪ {w} as S w,U = U ∪ {w};
label w “checked”;

Proposition 1 ensures the following statement.

Theorem 1. Algorithm I STAR enumerates all the i-stars of a given undirected graph
G = (V, E) in O(|V | + |E|) time.

4 Structure Mining by Enumerating Isolated Stars

In the preceding sections, we observed star-like topologies in the undirected webgraph,
and regard them as a candidate substructure for web structure mining. We gave them
a definition as i-stars, and designed a simple algorithm for their enumeration. A linear
time algorithm for enumerating i-stars is expected to work in practice even for the entire
webgraph. In fact, it can work for our webgraph of approximately 0.1 billion nodes and
17 billion links in a practical time.
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4.1 Summary of the Web Data and Experiments

Since i-stars of size 2 simply imply mutual links between two pages, we neglect them
as communities and focus only on i-stars of size ≥ 3 in the subsequent experiments.
Fortunately, this assumption ensures that our experiments can find independent sets of
nodes as candidates of communities or their cores, according to Proposition 1.

In Experiment 1, we pick 32 domains from the Web, and enumerate i-stars in the
undirected webgraph of each domain. In Experiment 2, we enumerate all the i-stars
from the undirected webgraph of the entire Web in Table 1, and also observe the distri-
bution of their sizes. Here, we classify those i-stars into two categories: intra-domain
i-star whose nodes belong to a single domain, and inter-domain i-star whose nodes ap-
pear in multiple domains. We can expect that most of useful communities correspond
to inter-domain set of pages [1,7].

4.2 Experiment 1

Table 2. Data of domains www.gnu.org and
www.keio.ac.jp

webgraph undirected
domain #pages #links #edges

www.gnu.org 15,901 96,347 8,965
www.keio.ac.jp 587 5,639 1,238

Among 32 domains we examined, we fo-
cus on two domains www.gnu.org (the
site of GNU Operating System) and
www.keio. ac.jp (the site of Keio Univ.,
Japan) that remarkably showed common
(topological) properties that many do-
mains had (Table 2). Fig. 3 shows the dis-
tributions of i-clique sizes. By observing
the distributions of i-star sizes, there found 88 and 8 i-stars in domains www.gnu.org
and www.keio.ac.jp, respectively. Among them, we could also find some ex-
tremely large i-stars such as sizes 2,446 and 73, in domains www.gnu.org and
www.keio.ac.jp, respectively.
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org and www.keio.ac.jp

Here, we examine the i-star
of size 33 in domain www.
keio.ac.jp, as an example.
We confirmed that this i-star
corresponds to a set of ‘top
news’ pages of Keio University
(Table 3). The center node of
the i-star corresponds to a page
that has a list of all the news
contents with links to them, and
we call such a page an in-
dex page. On the other hand,
the satellite nodes correspond
to pages of each news con-
tents (content page), and they
always had a backward link to
the index page. This implies
that there are bidirectional links between every content page and the index page, and
they form a star, which is isolated in this case.
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Table 3. URLs of the pages of an i-star of size
33 in domain www.keio.ac.jp that form an in-
dex structure; (a) the index page, and (b) content
pages

(a) http://www.keio.ac.jp/news/index-en.html

http://www.keio.ac.jp/news/021211e.html
http://www.keio.ac.jp/news/020729e.html

(b) http://www.keio.ac.jp/news/020705e.html
· · ·
http://www.keio.ac.jp/news/010405e.html

In addition to the above example,
we verified all the i-stars of size ≥
10 in both domains (16 and 5 i-stars
in domains www.gnu.org and www.
keio.ac.jp, respectively). The result
showed that each of them corresponds
to a set of pages consist of an index
page and their content pages, and we
name this kind of structure of pages an
index structure. We could observe that
all the i-stars of sizes ≥ 10 always formed index structures with no exceptions.

4.3 Experiment 2
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We enumerated all the i-stars
in the undirected webgraph of
the entire Web shown in Ta-
ble 1, and Fig. 4 shows the
distributions of i-star sizes. In
this figure, ‘all’ represents all
of i-stars (including both intra-
and inter-domain ones), and
‘transversal’ indicates inter-
domain ones alone. Table 4
shows the number of enumer-
ated i-stars classified by their
sizes and by intra-/inter- cate-
gories.

Table 4. Classification of isolated stars and
their sizes

size ≥ 3 any size
intra-domain 1,034,855 2,143,776
inter-domain 1,344 2,815
total 1,036,199 2,146,591

At first, we can see that the sizes of both
inter-domain and all of the i-stars in the undi-
rected webgraph roughly obey the power-law
distributions. This is a quite interesting re-
sult in the sense that there is another index
that shows power-law in a scale-free network.
We can also find some extremely large i-
stars, such as size 9,624, and this is indeed
a huge index structure in a single domain
(www.shareit.com). In contrast, the largest
size of inter-domain i-star was 340.

Table 5. An example of an inter-domain i-
star of size 19: (a) a page corresponding to
the center node, and (b) pages correspond-
ing to the satellite nodes. They are related
to libraries in Illinois.

(a) http://www.hccweb.com/

http://www.waverly.lib.il.us/
http://www.tremont.lib.il.us/

(b) · · ·
http://www.hccweb.com/publicity/
http://www.hccweb.com/faq.html

We next verify from Table 4 that the ratio of
inter-domain i-stars is approximately 0.13%
of all the i-stars, which is a quite small part
of all. This tells, together with the results of
Experiment 1, that i-stars seem to be corre-
sponding to index structures and are essen-
tially inherent in single domains. However,
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inter-domain i-stars are expected to have different meanings from the ones that intra-
domain i-stars have. Therefore, we then investigate the meanings of the pages corre-
sponding to all of 115 inter-domain i-stars of sizes ≥ 3 lying over more than 2 domains.
As a result, we observed that they are classified into the following two categories: 1.
index structures, 2. sets of pages that have common interests in a specific topic, that
are, candidates of communities. In Category 1, it was often the case that a single index
locates each of their contents on different domains. On the other hand, in Category 2,
satellite nodes of an i-star correspond to a set of top pages of some sites that share a
certain topic in common, and these may be regarded as communities in the Web. Table
5 shows an example of a set of pages of an inter-domain i-star of Category 2.

4.4 Discussions

We verified through Experiments 1 and 2 that i-stars can find some candidates of com-
munities which mainly lie over multiple domains. On the other hand, we also notice
that most of the i-stars correspond to index structures in single domains, which can be
viewed as site navigations or nepotistic cores [1,7]. Therefore, these index structures,
especially their satellite pages, are considered no longer to be necessary for further
structure mining once they are found. From this point of view, we here propose the i-
star contracted webgraph. Remember, in preparing the i-star contracted webgraph, that
Proposition 1 guarantees that i-stars of sizes greater than 2 can always be contracted in
any order since they are independent.

In fact, the number of satellite nodes of i-stars of sizes ≥ 3 in the webgraph in Table 1
is 11,967,237, and therefore, if we construct the i-star contracted webgraph, the number
of nodes would become 83,854,680, which is approximately 87.5% of the original one.
This observation seems quite suggestive in the sense that our results not only propose
a candidate structure for web mining but offer a powerful tool for preprocessing the
webgraph for further utilization for web mining or give a compact representation of the
webgraph which leads to a technique for compressing the webgraph [9]. We can expect
to find in the i-star contracted webgraph further hidden information more efficiently that
cannot be mined in the original webgraph, or at least we can say that i-star contracted
webgraph can make the webgraph tractable in its size.

We already have several interesting experimental observations in these points, e.g.,
scale-freeness in the i-star contracted webgraph, and so on [12].

5 Conclusion

In this paper, we introduced a new graph substructure called an i-star which frequently
appeared in the real webgraph. Although the definition of i-star is quite simple, it has
some good properties and we can design an efficient enumeration algorithm due to its
simplicity. As a result, we had a lot of useful observations by structure mining using
i-stars, where it was difficult by conventional clique or biclique. We confirmed that
our approach was not only successful for mining communities but can be useful for
preprocessing to have succinct representation of the webgraph, and we believe that our
approach can also be applied for detecting link farm spams [11,13]. It is also important
to identify other characteristic substructures in the recent Web, representing such as
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blogs, SNS, link farm spams, and so on, for further effective structure mining. Finally,
we mention that it is important to carry out these experiments on some other sets of web
data.
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Abstract. One of the grand research and industrial challenges in re-
cent years is efficient web search, inherently involving the issue of page
ranking. In this paper we address the issue of representing and quan-
tifying web ranking trends as a measure of web pages. We study the
rank position of a web page among different snapshots of the web graph
and propose normalized measures of ranking trends that are comparable
among web graph snapshots of different sizes. We define the rank change
rate (racer) as a measure quantifying the web graph evolution. There-
after, we examine different ways to aggregate the rank change rates and
quantify the trends over a group of web pages. We outline the problem of
identifying highly dynamic web pages and discuss possible future work.
In our experimental evaluation we study the dynamics of web pages,
especially those highly ranked.

Keywords: PageRank, Web Graph, Web Dynamics.

1 Introduction

The Web is a highly dynamic structure that is constantly changing. The evolu-
tion of the web graph is caused by the changes in graph structure and in the web
pages’ contents. One of the biggest challenges is that of efficient searching these
vast amounts of data. The research area of web search inherently involves the
issue of result ranking, since users are interested in the top results only. In this
paper we focus on the changes in the graph structure, as they predominantly
cause the changes in authority score and therefore of the web page ranking. In
particular, we aim to study the changes and the trends that appear in the rank
of a web page among different snapshots of the web graph.

We address the issue of representing and quantifying the evolution of web page
rankings –i.e. the trends that appear in their rankings– both individually and
at an aggregate level. As the different web graph snapshots may be significantly
different in terms of size we need to deal with the issue of rank normalization.
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To capture the dynamism and the trends of a web page’s ranking, we define the
rank change rate (racer). We represent the evolution of a web page through a
sequence of racer values. Thereafter, we address the problem of finding highly
dynamic pages, i.e. those with high racer values over a large period of time.
In particular, we are interested in finding representative web pages that allow
us to determine structural parts of the graph that change rapidly. Toward this
goal we introduce aggregate trend measures. Finally, we outline our future work
and discuss methods to identify highly dynamic pages based on racer values. To
summarize, the key contributions of this paper are:

– We propose a rank normalization method and present racer, a measure that
quantifies the trend of web pages through its ranking change rate.

– We discuss the problem of finding highly dynamic web pages as those that
display high trends. We introduce measures to quantify the aggregate trends
of a set of web pages.

– We present initial experiments of the proposed aggregate measures and esti-
mate the expressiveness of our method to represent the evolution of web pages.

The rest of the paper is organized as follows: We give an overview of related
work in Section 2, while in Section 3 we introduce the racer measure. In Section
4, we address the issue of estimating the dynamism of a set of web pages over
time. In Section 5, we present the experimental evaluation. In Section 6 we
outline our future work about methods to determine highly dynamic web pages.
Finally, we conclude in Section 7.

2 Related Work

The ranking of query results in a web search-engine is an important problem
and has attracted significant attention in the research community. Link-based
ranking techniques like PageRank [1] or HITS [2] assess the importance of web
pages based on the Web’s structure. These two seminal approaches have been
extended [3,4,5,6,7] and their properties have been studied intensively [8,9,10,11].

The structure of the web graph has been analyzed in different efforts show-
ing that this graph exhibits power-law distributed degrees [12] and self-similar
behavior [13]. The latter observation provides the basis for our experiments, in
which we derive an understanding of the rank change rate of web pages by study-
ing only a small subset of the web graph. The dynamics of the Web has been
examined in several more recent studies. Fetterly et al. [14] put their a focus on
the evolution of the Web’s contents. The more recent study by by Ntoulas et
al. [15] considers in addition the Web’s structural evolution. Another group of
related research considers the negative effects that search engines have on the
Web’s evolution and proposes countermeasures [16,17,18].

3 Web Page Ranking Dynamics: Rank Change Rate

In this section, we define a measure that expresses the trends of web pages’
ranking among different snapshots of the web graph. Let Gti be the snapshot of
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the web graph created by a crawl at time ti and let nti = |Gti | the number of
web pages at time ti. We define rank(p, ti) as a function providing the rank of a
web page p ∈ Gti according to some criterion, for example PageRank authority
score values. Intuitively, an appropriate measure for web pages trends is the rank
change rate between two snapshots, but as the size of the web graph may change
the trend measure should be comparable across different graph sizes.

Therefore we address the need for normalization of the page ranking across
graph snapshots. Assume two snapshots of the web graph Gti and Gtj and times
ti, tj respectively with ti < tj and nti < ntj . For simplicity let us assume that
Gti is a subset of Gtj , i.e. no nodes were removed from Gti . Let’s assume that
there is a page p that belongs to the web graph Gti and Gtj and rank(p, ti) =
rank(p, tj), then apparently the same page is more important in the second case.
For instance, assume rank(p, ti) = rank(p, tj) = 5 and nti = 100, ntj = 1000.
One would claim that the first event - page occupies the 5th out of 100 pages
- is less important than the second - page occupies the 5th out of 1000 pages.
Thus we motivate the definition of the normalized rank - nrank - of a page in
a ranked list. We impose that the nrank of all pages in a ranked list sum up
to 1. Thus the nrank of a page p that occupies position rank(p, ti) in a list of
nti � 1 items is:

nrank(p, ti) =
2 ∗ rank(p, ti)

n2
ti

. (1)

We now define rank change rate (racer) using the normalized ranks (nrank)
as:

racer(p, ti, tj) =
nrank(p, ti) − nrank(p, tj)

nrank(p, ti)
= 1 − rank(p, tj)

rank(p, ti)
∗
(

nti

ntj

)2

. (2)

Since we are interested in representing the dynamic of web pages through more
than one racer values, the values of different snapshots must be comparable.
Thus, we define the normalized rank change rate (nracer). In order to make the
racer values comparable across different graph snapshots we have to divide the
racer values by their value range. To determine the racer value range we define
the maximum value (max) as the racer value when a page goes from bottom
rank(p, ti) = nti to top rank(p, tj) = 1 and the minimum value (min) when
a page goes from top rank(p, ti) = 1 to bottom rank(p, tj) = ntj . Therefore
normalized rank change rate (nracer) for page p between graph snapshots Gti

and Gtj is given by:

nracer(p, ti, tj) =
racer(p, ti, tj)
max − min

. (3)

Notice that we do not use footrule or Kendall’s τ distance to quantify change
because these measures are not sensitive to (i) the rate of change and (ii) to
the relative importance of change. For example the top page falling to the 10th

place and the 991st page falling to the 1000th place will be considered as events
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of equal importance using the footrule distance. In the Kendall’s τ case reverse
pairs’ ranks are equally important regardless to the magnitude of the rank dis-
agreement. An important property of racer is that changes in high rank positions
are considered more important than changes in the lower rank positions.

4 Rank Aggregation Measures

As initial experiments show, the vast majority of the pages remains stable across
graph snapshots, while significant changes in ranking are observable only for a
small fraction of pages. An important problem is to identify groups of web pages
that exhibit a high degree of dynamism. We first define some measurements to
quantify the dynamism of a group of web pages. Based on these measures we
may locate highly dynamic web pages and thereafter explore their neighborhood.

By studying the values of nracer we observe the trend of an individual web
page over time. To capture the dynamism of a set of web pages, we have to define
a measure to quantify the aggregate rank change. Notice that even if nracer
values are calculated based on the entire graph, the proposed aggregations may
consider only a subset of the graph, for example the higher ranked pages or the
pages corresponding to a query result set.

A straightforward measure of the aggregate rank change value between two
sets of web pages is to consider the footrule distance between the nrank values.

fracer(Gti , Gtj ) =
∑

p∈Gti

|nrank(p, ti) − nrank(p, tj)|. (4)

To capture the dynamics of a web graph among two snapshots but also the
trend of the web pages, we define the aggregation of the nracer values over all
pages in the transition between Gti and Gtj :

aracer(Gti , Gtj ) =

∑
p∈Gti

nracer(p, ti, tj)

nti

. (5)

Intuitively this measure (aracer) represents the dominant aggregate trend in
the set among the two graph snapshots. For example a positive value for aracer
indicates that the graph generally gains importance - even though there may
be pages that lose in this sense. We have to stress here that depending on the
individual trends we might have a very dynamic set where the positive trends
are balanced by the negative ones resulting in very small values for aracer.

While aracer represent the general trend (either positive or negative) of a
set of web pages, we are also interested in the absolute dynamism of the graph
in total. Thus we define sracer that aggregates the absolute values of the rank
change rate:

sracer(Gti , Gtj ) =

∑
p∈Gti

|nracer(p, ti, tj)|
nti

. (6)

In our experimental evaluation we study the dynamics of the Web using two
of the measures mentioned above.



Representing and Quantifying Rank - Change for the Web Graph 161

5 Experimental Evaluation

In order to evaluate the effectiveness of the proposed approach, we performed
initial experiments on a real dataset. The dataset is a subset of the Internet
Archive obtained from its European branch1 that contains weekly crawls of
eleven U.K. governmental web sites. We constructed the web graph snapshots
from this dataset, yielding a total of 560, 496 distinct nodes and 4, 913, 060 edges
corresponding to web pages and interconnecting hyperlinks. PageRank was com-
puted on monthly snapshots of this graph, resulting in a total of 24 pre-computed
rankings.
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Fig. 1. The (log) frequency distribution of nracer

In Figure 1 we present the distribution frequency of the nracer values with
regards to the temporal distance between graph snapshots. The plot shows the
number of web pages with the particular nracer value in logarithmic scale. From
this graph we conclude: (i) for consecutive graph snapshots, the vast majority of
the pages (80 − 90%) improve their ranking but only marginally and (ii) when
the temporal distance between snapshots increases, the nracer values follow the
same distribution but the peek is shifted to the right, thus conveying that web
page rankings accumulate over time.

In the next experiment we aim to study the dynamics of web pages in the
higher rank positions. We consider the subset of the top-k ranked web pages.
In Figure 2 we illustrate the sracer values with regard to the number of pages
that we consider in each subset. As expected the sracer values decrease as the
k increases since the intersection of the two sets of pages is smaller when the
set is small. This indicates that even the pages that are highly ranked change
within two timestamps and verifies our assumption that the web graph is a highly
dynamic structure. Thereafter, we focus on the subgraph for k = 100 pages.

In Figure 3, again we plot the sracer values but this time with regards to the
position of the web page in the top-100 rank (we divide the range in bins of 10
positions each.

1 An extended version of the dataset (with regard to the number of crawls) is accessible
online at http://www.europarchive.org/ukgov.php
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Fig. 3. sracer values vs. ranking position
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Fig. 4. aracer values vs. ranking position

We observe that the pages ranked between 30−40 out of 100 have the highest
sracer values and therefore constitute the most dynamic bin of the top-100 list.

Figure 4 presents the aggregate rank changes aracer vs. the ranking position.
The values of aracer illustrate the trend of the pages. We observe that the low
and high ranked pages exhibit positive aracer values while the mid-ranked pages
exhibit negative aracer values.
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The above experiments indicate that the trends of the web pages are not
evenly distributed and that it makes sense to try to identify the most dynamic
sets of pages to closely monitor them. Of course the trends and tendencies are
very much dependent on the specific graph so no general rules can be extracted
so far.

6 Future Work

An important problem is to identify the structural subsets of the graphs that
exhibit a high degree of dynamism, i.e. high change rate values. Moreover beyond
the structural parts of the Web, there is also the need for identifying topic-wise
highly dynamic groups of web pages, i.e. for example based on a query term. In
a first step, the issue is the identification of highly dynamic web pages which can
be used as representative web pages. In a second step, these web pages may be
used to determine structural parts of the web graph or to retrieve semantically
related web pages and examine their dynamism. Here we deal with the first issue
and discuss two methods that are appropriate to determine highly dynamic web
pages.

6.1 Aggregate Ranking Across Multiple Graph Snapshots

In the previous subsection we defined measures for quantifying aggregate rank
trends between only two graph snapshots. But the requirement is to be able to
deal with aggregate ranking trends spanning large time periods and across many
graph snapshots. Assuming a set of consecutive graph snapshots Gti , then for
each pair (Gti ,Gti+1) we can define a list NRi containing the pages p in Gti and
Gti+1 ranked in descending |nracer| score order. Apparently the top pages in
NRi represent the most dynamic ones with regards to rank change rate while
the last ones in this list are the most stable ones. The objective is to aggregate
the NRi lists into a sorted list NR that best represents the pages ranked in
descending order of racer values over the entire time period. This problem has
been extensively worked out in the past [19,20]. A straightforward solution is to
consider all lists equally-weighted and handle missing values by giving them the
minimum |nracer| value, i.e. zero. Based on the globally sorted list NR there are
two ways to choose the most dynamic web pages either (i) to choose the k web
pages with the highest position in NR, where k is a fixed parameter, or (ii) to
choose all web pages with aggregated score larger than a threshold value theta,
which also is a fixed value. Afterwards, this set of pages can be used for defining
highly dynamic structural parts of the Web by exploiting their neighborhood.

6.2 Pareto-Optimal Web Pages

While the aggregate of the lists NRi returns a globally sorted list, we are inter-
ested in finding a set of highly dynamic web pages, as representative web pages.
These web pages can be used to determine highly dynamic sub-graphs, based on
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the terms they contain or based on their locality. An appropriate set of interest-
ing web pages is the set of the Pareto-optimal pages [21] or skyline set [22]. A
web page is interesting if it is not dominated by any other, i.e. is not worse than
any other in all lists. In our case, a web page over a time period is considered
as highly dynamic if there does not exists any other web page that has a higher
rank change rate in all lists NRi. Even though Pareto-optimal web pages have
not necessary the highest rank change rate values over a large time period, they
are useful as representative web pages to determine highly dynamic set of web
pages. For example consider a web page p that has a high nracer value in every
second list NR2∗i, ∀i and an extremely low nracer in NR2∗i+1, ∀i. It is obvious
that web page p is highly dynamic over some time periods, but it is quite impos-
sible for it to maintain a high rank position in the globally sorted list NR. The
definition of the Pareto-optimal web pages ensure that web pages with behavior
like page p are returned as highly dynamic web pages. In our future work we
plan to explore their locality to identify structural parts of the web graph that
are highly dynamic.

7 Conclusions

Searching in the Web inherently involves the ranking issue. Assuming PageRank
as the ranking algorithm, and considering the dynamics of the Web, in this paper
we address the issue of representing and quantifying the web graph evolution.
Thus, we define rank change rate (racer). We pose the problem of finding highly
dynamic web pages and we outline our future work to enhance the applicability
of the racer measure. We conducted initial experiments with real web data
evolving over time. The results are encouraging towards a representation of the
individual and aggregate ranking trends due to web graph evolution.
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Boguñá, Marián 59
Boldi, Paolo 107
Broder, Andrei 1, 18

Das, Tapajyoti 97
Djidjev, Hristo N. 117

Flammini, Alessandro 59
Flaxman, Abraham D. 24
Fortunato, Santo 59

Ghorbani, Ali A. 129

Healy, John 137
Hirate, Yu 36

Janssen, Jeannette 1, 18, 137

Kato, Shin 36

Litvak, Nelly 72

Menczer, Filippo 59
Milios, Evangelos 1, 18, 137

Olsen, Martin 84
Ota, Yoshinobu 149

Posenato, Roberto 107

Richardson, Ross M. 47

Santini, Massimo 107
Scheinhardt, Werner R.W. 72

Uemichi, Akio 149
Uno, Yushi 149

Vazirgiannis, Michalis 157
Vigna, Sebastiano 107
Vlachou, Akrivi 157
Volkovich, Yana 72

Yamana, Hayato 36


	Title Page
	Preface
	Organization
	Table of Contents
	Modelling and Mining of Networked Information Spaces
	Overview
	Presentation Highlights
	Tutorials
	Panel Discussion

	Summaries of Poster Presentations
	References

	Workshop on Algorithms and Models for the Web Graph
	Overview
	Ranking of Search Results
	Models for the Web Graph and Other Complex Networks
	Overview of the Workshop
	References

	Expansion and Lack Thereof in Randomly Perturbed Graphs
	Introduction
	Results and Applications
	History of Expansion in Random Graphs
	Notation
	Distributions for Random Graphs
	Outline of What Follows

	Perturbing Any Connected ¯G with a 1-Out Yields Expander
	Gentler Perturbation Does Not Necessarily Yield Expander
	Conditions for Expansion in Kleinberg’s Small-World Graph
	Conclusion
	References

	Web Structure in 2005
	Introduction
	The e-Society Project[5]
	Crawling Status

	HowManyWebPagesAreThere?
	Related Works
	Applying Graph Theory to Web Link Structure
	Graph Structure in the Web[6]
	Structural Properties of the African Web[7]
	China Web Graph Measurements and Evolution[8]

	Web Structure in 2005
	Host Level Reduction
	Dataset Properties
	The Whole Web Structure in 2005
	Web Structures by TLD
	Web Structures by Language

	Conclusion
	Future Work

	References

	Local/Global Phenomena in Geometrically Generated Graphs
	Introduction
	Related Work
	Definitions and Model
	Results
	Further Directions
	Proofs
	Regions of Influence
	Proof of Theorem 5

	References

	Approximating PageRank from In-Degree
	Introduction
	Theoretical Analysis
	Results
	Applications to the Live Web
	Discussion
	References

	Probabilistic Relation between In-Degree and PageRank
	Introduction
	Preliminaries
	Model
	Relation between In-Degree and PageRank
	In-Degree Distribution
	The Main Stochastic Equation

	Analysis
	Numerical Results
	Discussion
	References

	Communities in Large Networks: Identification and Ranking
	Introduction
	Related Work
	Our Results

	Locating Communities
	Community Definition
	Intractability
	A Greedy Approach

	Ranking the Members
	Experimental Work
	Identification of Community Members in Artificial Graphs
	Identification and Ranking of Danish Computer Science Sites
	Identification and Ranking of Danish Chess Pages

	References

	Combating Spamdexing: Incorporating Heuristics in Link-Based Ranking
	Introduction
	Related Work
	Background
	PageRank
	Link Spamming

	Combating Spamdexing
	Cleaning the Link Graph
	Core Set Identification
	Spamdexing Extension
	Biased Ranking

	Evaluation
	Experimental Results
	Conclusion and Future Work
	References

	Traps and Pitfalls of Topic-Biased PageRank
	Introduction
	PageRank
	Strongly vs.Weakly Preferential
	AWorked Example, and Some Observations

	Experiments
	More Precision Might End in Less Precision
	References

	A Scalable Multilevel Algorithm for Graph Clustering and Community Structure Detection
	Introduction
	Our Clustering Algorithm
	Graph Clustering as a Minimum Cut Problem
	Finding a MWC Using Multilevel Graph Partitioning

	Experiments
	Comparison with Newman-Girvan Algorithm
	Comparison with Clauset-Newman-Moore Algorithm
	Testing on Real-World Data Graphs
	Measuring the Scalability

	Conclusion
	References

	A Phrase Recommendation Algorithm Based on Query Stream Mining in Web Search Engines
	Introduction
	Conceptual Frequency Rate
	Phrase Recommender Algorithm
	Simulation Results
	Conclusions
	References

	Characterization of Graphs Using Degree Cores
	Introduction
	K-cores
	Methods
	Data
	Results
	Conclusion
	Future Work
	References

	Web Structure Mining by Isolated Stars
	Introduction
	The Webgraph and the Web Data
	Isolated Stars
	Definition of Isolated Stars
	Properties of Isolated Stars and Isolated Cliques
	Enumeration of Isolated Stars

	Structure Mining by Enumerating Isolated Stars
	Summary of theWeb Data and Experiments
	Experiment 1
	Experiment 2
	Discussions

	Conclusion
	References

	Representing and Quantifying Rank - Change for the Web Graph
	Introduction
	Related Work
	Web Page Ranking Dynamics: Rank Change Rate
	Rank Aggregation Measures
	Experimental Evaluation
	Future Work
	Aggregate Ranking Across Multiple Graph Snapshots
	Pareto-Optimal Web Pages

	Conclusions
	References

	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




